【題目】下面給出四種說法: ①用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( , ).
其中正確的說法有(請將你認為正確的說法的序號全部填寫在橫線上)

【答案】②③④
【解析】解:對于①,用相關指數(shù)R2來刻畫回歸效果時, R2越大,說明模型的擬合效果越好,∴①錯誤;
對于②,命題P:“x0∈R,x02﹣x0﹣1>0”的否定是
¬P:“x∈R,x2﹣x﹣1≤0”,②正確;
對于③,根據(jù)正態(tài)分布N(0,1)的性質可得,
若P(X>1)=p,則P(X<﹣1)=p,
∴P(﹣1<X<1)=1﹣2p,
∴P(﹣1<X<0)= ﹣p,③正確;
對于④,回歸直線一定過樣本點的中心( , ),正確;
綜上,正確的說法是②③④.
所以答案是:②③④.
【考點精析】本題主要考查了相關系數(shù)的相關知識點,需要掌握|r|≤1,且|r|越接近于1,相關程度越大;|r|越接近于0,相關程度越小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,90)之外的人數(shù).

分數(shù)段

[50,60)

[60,70)

[70,80)

[80,90)

x:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,曲線C的參數(shù)方程為 (t為參數(shù)),以O為極點x軸的正半軸為極軸建極坐標系,直線l的極坐標方程為ρ(cosθ﹣sinθ)=4,且與曲線C相交于A,B兩點. (Ⅰ)在直角坐標系下求曲線C與直線l的普通方程;
(Ⅱ)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠家為了解銷售轎車臺數(shù)與廣告宣傳費之間的關系,得到如表統(tǒng)計數(shù)據(jù)表:根據(jù)數(shù)據(jù)表可得回歸直線方程 ,其中 ,據(jù)此模型預測廣告費用為9萬元時,銷售轎車臺數(shù)為(

廣告費用x(萬元)

2

3

4

5

6

銷售轎車y(臺數(shù))

3

4

6

10

12


A.17
B.18
C.19
D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,已知點P(0, ),曲線C的參數(shù)方程為 (φ為參數(shù)).以原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρ= . (Ⅰ)判斷點P與直線l的位置關系并說明理由;
(Ⅱ)設直線l與曲線C的兩個交點分別為A,B,求 + 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著社會發(fā)展,廣州市在一天的上下班時段經(jīng)常會出現(xiàn)堵車嚴重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別;T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10)嚴重擁堵.早高峰時段(T≥3),從廣州市交通指揮中心隨機選取了50個交通路段進行調查,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(1)據(jù)此直方圖,估算交通指數(shù)T∈[3,9)時的中位數(shù)和平均數(shù);
(2)據(jù)此直方圖,求市區(qū)早高峰馬路之間的3個路段至少有2個嚴重擁堵的概率;
(3)某人上班路上所用時間,若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘;中度擁堵為45分鐘;嚴重擁堵為60分鐘,求此人上班所用時間的數(shù)學期望.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入A的值為2.5,則輸出的P值為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B的大。
(2)已知b= ,BD為AC邊上的高,求BD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程 x2+ x+tana=0有兩個相等的實數(shù)根,則銳角a等于(
A.15°
B.30°
C.45°
D.60°

查看答案和解析>>

同步練習冊答案