(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.
【答案】分析:因?yàn)椤袿2不斷移動(dòng)的同時(shí),直線l也在進(jìn)行著移動(dòng),而圓與圓的位置關(guān)系有:相離(外離,內(nèi)含),相交、相切(外切、內(nèi)切〕,直線和圓的位置關(guān)系有:相交、相切、相離,所以這樣一來,我們?cè)诜治鲞^程中不能忽略所有的可能情況.
解答:解:(1)設(shè)直線l與y軸交于點(diǎn)N,
直線l經(jīng)過點(diǎn)A(-12,0),
∵∠OAN=60°,
∴tan30°=,
解得:NO=12
故與y軸交于點(diǎn)(0,),
設(shè)解析式為y=kx+b,則b=,k=,
∴直線l的解析式為y=-x-12

(2)⊙O2第一次與⊙O1相切時(shí),向左平移了5秒(5個(gè)單位)如圖所示.
在5秒內(nèi)直線l平移的距離計(jì)算:
8+12-=20-
所以直線l平移的速度為每秒(4-)個(gè)單位;

(3)其值不變.
∵Rt△EFG∽R(shí)t△AEO2
于是可得:(其中O2E=EG)
所以FG•AO2=EG2=50,即其值不變.
點(diǎn)評(píng):本題綜合考查了直線與圓、圓與圓的位置關(guān)系,全等三角形的判定,圖形的平移變換等多個(gè)知識(shí)點(diǎn).考查學(xué)生綜合運(yùn)用數(shù)學(xué)的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過該隧道?通過計(jì)算說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年文星鎮(zhèn)中考模擬試卷(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•武漢)如圖,隧道的截面由拋物線AED和矩形ABCD構(gòu)成,矩形的長(zhǎng)BC為8m,寬AB為2m,以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系.y軸是拋物線的對(duì)稱軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6m.
(1)求拋物線的解析式;
(2)如果該隧道內(nèi)設(shè)雙行道,現(xiàn)有一輛貨運(yùn)卡車高4.2m,寬2.4米,這輛貨運(yùn)卡車能否通過該隧道?通過計(jì)算說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省武漢市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•武漢)如圖,在平面直角坐標(biāo)系中,點(diǎn)O1的坐標(biāo)為(-4,0),以點(diǎn)O1為圓心,8為半徑的圓與x軸交于A、B兩點(diǎn),過點(diǎn)A作直線l與x軸負(fù)方向相交成60°角.以點(diǎn)O2(13,5)為圓心的圓與x軸相切于點(diǎn)D.

(1)求直線l的解析式;
(2)將⊙O2以每秒1個(gè)單位的速度沿x軸向左平移,同時(shí)直線l沿x軸向右平移,當(dāng)⊙O2第一次與⊙O1相切時(shí),直線l也恰好與⊙O2第一次相切,求直線l平移的速度;
(3)將⊙O2沿x軸向右平移,在平移的過程中與x軸相切于點(diǎn)E,EG為⊙O2的直徑,過點(diǎn)A作⊙O2的切線,切⊙O2于另一點(diǎn)F,連接AO2、FG,那么FG•AO2的值是否會(huì)發(fā)生變化?如果不變,說明理由并求其值;如果變化,求其變化范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案