【題目】如圖,矩形ABCD中,E是AD的中點(diǎn),延長CE,BA交于點(diǎn)F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
【答案】(1)證明見解析;(2)BC=2CD,理由見解析.
【解析】
(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點(diǎn),可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.
(1)∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中點(diǎn),
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四邊形ACDF是平行四邊形;
(2)BC=2CD.
證明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中點(diǎn),
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y=x2+bx+c 交 軸于點(diǎn)A(0,-1)且過點(diǎn) , P是拋物線C上一個動點(diǎn),過P作PB∥OA,以P為圓心,2為半徑的圓交PB于C、D兩點(diǎn)(點(diǎn)D位于點(diǎn)C下方).
(1)求拋物線C的解析式;
(2)連接AP交⊙P于點(diǎn)E,連接DE,AC.若ΔACP是以CP為直角邊的直角三角形,求∠EDC的度數(shù);
(3)若當(dāng)點(diǎn)P經(jīng)過拋物線C上所有的點(diǎn)后,點(diǎn)D隨之經(jīng)過的路線被直線 截得的線段長為8,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA中點(diǎn),點(diǎn)P在BC上以每秒1個單位的速度由C向B運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)△ODP的面積S=________.
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點(diǎn)Q,使得ODQP為菱形?若存在,求t的值,并求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點(diǎn)P的坐標(biāo)(請直接寫出答案,不必寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子里有紅、黃、白三種顏色的球共50個,它們除了顏色不同外都相同,其中黃球的個數(shù)比白球的個數(shù)少5個,已知從袋子里隨機(jī)摸出一個球是紅球的概率是.
(1)求袋子里紅球的個數(shù);
(2)求從袋子里隨機(jī)摸出一球是白球的概率,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點(diǎn)同時出發(fā),相向而行,當(dāng)兩人相遇后,甲繼續(xù)向點(diǎn)B前進(jìn)(甲到達(dá)點(diǎn)B時停止運(yùn)動),乙也立即向B點(diǎn)返回.在整個運(yùn)動過程中,甲、乙均保持勻速運(yùn)動.甲、乙兩人之間的距離y(米)與乙運(yùn)動的時間x(秒) 之間的關(guān)系如圖所示.則甲到B點(diǎn)時,乙距B點(diǎn)的距離是米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察以下等式
(1)按以上等式,填空:( 。;
(2)利用多項式的乘法法則,證明(1)中的等式成立.
(3)利用(1)中的公式,化簡求值:
其中
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y= x2+ x﹣ 的圖象與x軸交于點(diǎn) A,B,交 y 軸于點(diǎn) C,拋物線的頂點(diǎn)為 D.
(1)求拋物線頂點(diǎn) D 的坐標(biāo)以及直線 AC 的函數(shù)表達(dá)式;
(2)點(diǎn) P 是拋物線上一點(diǎn),且點(diǎn)P在直線 AC 下方,點(diǎn) E 在拋物線對稱軸上,當(dāng)△BCE 的周長最小時,求△PCE 面積的最大值以及此時點(diǎn) P 的坐標(biāo);
(3)在(2)的條件下,過點(diǎn) P 且平行于 AC 的直線分別交x軸于點(diǎn) M,交 y 軸于點(diǎn)N,把拋物線y= x2+ x﹣ 沿對稱軸上下平移,平移后拋物線的頂點(diǎn)為 D',在平移的過程中,是否存在點(diǎn) D',使得點(diǎn) D',M,N 三點(diǎn)構(gòu)成的三角形為直角三角形,若存在,直接寫出點(diǎn) D'的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,即如圖,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,那么θ= , n= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com