【題目】(8分)點(diǎn)A,B在數(shù)軸上分別表示有理數(shù)a,b,A,B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A,B兩點(diǎn)距離AB=|a﹣b|.已知數(shù)軸上兩點(diǎn)A,B對應(yīng)的數(shù)分別為-1,3.點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對應(yīng)的數(shù)為x,A,B兩點(diǎn)之間的距離是 .設(shè)點(diǎn)P在數(shù)軸上表示的數(shù)為x,則x-4之間的距離表示為 .

.若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,則點(diǎn)P對應(yīng)的數(shù)為 .

若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為8,則點(diǎn)P對應(yīng)的數(shù)為 .

現(xiàn)在點(diǎn)A2個(gè)單位長度/秒的速度向右運(yùn)動(dòng),同時(shí)點(diǎn)B0.5個(gè)單位長度/秒的速度向左運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)B之間的距離為3個(gè)單位長度時(shí),求點(diǎn)A所對應(yīng)的數(shù)是多少?

【答案】(1)4;(2) |x+4|;(3)1;(4) -35;(5)-0.24.6

【解析】

(1)(2)在數(shù)軸上A、B兩點(diǎn)之間的距離為AB= |ab|,依此即可求解;

(3)根據(jù)中點(diǎn)坐標(biāo)公式即可求解;

(4)分兩種情況:點(diǎn)P在點(diǎn)A的左邊,點(diǎn)P在點(diǎn)B的右邊,進(jìn)行討論即可求解;

(5)分兩種情況:點(diǎn)A在點(diǎn)B的左邊,點(diǎn)A在點(diǎn)B的右邊,進(jìn)行討論即可求解.

(1)A,B兩點(diǎn)之間的距離是3-(-1)=4

(2)x與-4之間的距離表示為|x-(-4)|= |x4|;

(3)(-13)÷21,∴故點(diǎn)P對應(yīng)的數(shù)是1;

(4)點(diǎn)P在點(diǎn)A的左邊,

x的值是-1-(84)÷2=-3;點(diǎn)P在點(diǎn)B的右邊,

x的值是3 +(84)÷25;故x的值是-3或5;

(5)點(diǎn)A在點(diǎn)B的左邊,(43)÷ (20.5)×2+(-1)= ,∴點(diǎn)A所對應(yīng)的數(shù)是

點(diǎn)A在點(diǎn)B的右邊,(43) ÷(20.5)×2+(-1)=8;點(diǎn)A所對應(yīng)的數(shù)是8.故點(diǎn)A所對應(yīng)的數(shù)是或8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程

如圖,已知DEBCDF、BE分別平分∠ADE、ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DF、BE分別平分∠ADE、ABC,

∴∠ADF=      

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家經(jīng)銷一種綠茶,用于裝修門面已投資3000元,已知綠茶每千克成本50元,在第一個(gè)月的試銷時(shí)間內(nèi)發(fā)現(xiàn),銷量w(kg)隨銷售單價(jià)x(元/kg)的變化而變化,具體變化規(guī)律如下表所示

銷售單價(jià)x(元/kg)

70

75

80

85

90

銷售量w(kg)

100

90

80

70

60

設(shè)該綠茶的月銷售利潤為y(元)(銷售利潤=單價(jià)×銷售量﹣成本﹣投資).
(1)請根據(jù)上表,寫出w與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)求y與x之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍).并求出x為何值時(shí),y的值最大?
(3)若在第一個(gè)月里,按使y獲得最大值的銷售單價(jià)進(jìn)行銷售后,在第二個(gè)月里受物價(jià)部門干預(yù),銷售單價(jià)不得高于90元,要想在全部收回投資的基礎(chǔ)上使第二個(gè)月的利潤達(dá)到1700元,那么第二個(gè)月里應(yīng)該確定銷售單價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一次數(shù)學(xué)活動(dòng)課上,小穎用 10 個(gè)棱長為 1 的正方體積木搭成一個(gè)幾何體,然后她請小華用其 他棱長為 1 的正方體積木在旁邊再搭一個(gè)幾何體,使用小華所搭幾何體恰好和小穎所搭幾何體拼成一個(gè) 無空隙的大正方體(不改變小穎所搭幾何體的形狀).那么:按照小穎的要求搭幾何體,小華至少需要_____個(gè)正方體積木.按照小穎的要求,小華所搭幾何體的表面積最小為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,鐵路上A,B兩點(diǎn)相距25 km,C,D為兩村莊,DAAB于點(diǎn)A,CBAB于點(diǎn)B,已知DA=16 km,CB=11 km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)G、E、F分別在平行四邊形ABCD的邊AD、DC和BC上,DG=DC,CE=CF,點(diǎn)P是射線GC上一點(diǎn),連接FP,EP,求證:FP=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60 cm,A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4 cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2 cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是t(0<t≤15).過點(diǎn)DDFBC于點(diǎn)F,連接DE,EF。

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

(3)當(dāng)t為何值時(shí),DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店試銷一種成本單價(jià)為100元/件的運(yùn)動(dòng)服,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本單價(jià),又不高于180元/件,經(jīng)市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系滿足一次函數(shù)y=kx+b(k≠0),其圖象如圖。

(1)根據(jù)圖象,求一次函數(shù)的解析式;

(2)當(dāng)銷售單價(jià)x在什么范圍內(nèi)取值時(shí),銷售量y不低于80件。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,,

(1)當(dāng)時(shí),=_________;

(2)當(dāng)時(shí),_________;

(3)當(dāng),時(shí),____________;

(4)猜想不論的度數(shù)是多少,的度數(shù)與的關(guān)系,并簡述理由.

查看答案和解析>>

同步練習(xí)冊答案