【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,且AE∥CD.CE∥AB,連接DE交AC于F.
(1)證明:四邊形ADCE是菱形;
(2)試判斷BC與線段EF的關系,并說明理由.
【答案】(1)見解析;(2)結論:BC∥EF,BC=2EF,理由見解析
【解析】
(1)先根據(jù)兩組對邊分別平行的四邊形是平行四邊形證明四邊形ADCE是平行四邊形,
根據(jù)鄰邊相等的平行四邊形是菱形即可證明.
(2)結論:BC∥EF,BC=2EF.利用菱形的性質(zhì)以及三角形的中位線定理即可解決問題.
(1)證明:∵AE∥CD,EC∥AD,
∴四邊形ADCE是平行四邊形,
∵∠ACB=90°,BD=AD,
∴CD=AD=BD,
∴四邊形ADCE是菱形.
(2)解:結論:BC∥EF,BC=2EF.
理由:∵四邊形ADCE是菱形,
∴DE⊥AC,DF=EF,
∴∠DFA=∠ACB=90°,
∴DE∥BC,
∵BD=AD,
∴CF=FA,
∴BC=2DF=2EF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=3,AD=4,∠ABC=60°,過BC的中點E作EF⊥AB,垂足為點F,與DC的延長線相交于點H,則△DEF的面積是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接“七·一”黨的生日,某校準備組織師生共310人參加一次大型公益活動,租用4輛大客車和6輛小客車恰好全部坐滿,已知每輛大客車的座位數(shù)比小客車多15個.
(1)求每輛大客車和小客車的座位數(shù);
(2)經(jīng)學校統(tǒng)計,實際參加活動人數(shù)增加了40人,學校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為使所有參加活動的師生均有座位,最多租用小客車多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點.
(1)請求出拋物線的解析式;
(2)當0<x<4時,請直接寫出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分8分)
如圖,用兩段等長的鐵絲恰好可以分別圍成一個正五邊形和一個正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)風力資源豐富,為了實現(xiàn)低碳環(huán)保,該鄉(xiāng)鎮(zhèn)決定開展風力發(fā)電,打算購買10臺風力發(fā)電機組.現(xiàn)有A,B兩種型號機組,其中A型機組價格為12萬元/臺,月均發(fā)電量為2.4萬kw.h;B型機組價格為10萬元/臺,月均發(fā)電量為2萬kw.h.經(jīng)預算該鄉(xiāng)鎮(zhèn)用于購買風力發(fā)電機組的資金不高于105萬元.
(1)請你為該鄉(xiāng)鎮(zhèn)設計幾種購買方案;
(2)如果該鄉(xiāng)鎮(zhèn)用電量不低于20.4萬kw.h/月,為了節(jié)省資金,應選擇那種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在矩形ABCD中,AB=8,AD=3,點E是CD的中點,連接AE,將△ADE沿直線AE折疊,使點D落在點F處,則線段CF的長度是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙M交x軸于A(﹣1,0),B(3,0)兩點.交y軸于C(0,3),D(0,1)兩點.
(1)求點M的坐標;
(2)求弧BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側.
則其中正確結論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com