如圖①,有一張矩形紙片,將它沿對角線AC剪開,得到△ACD和△A′BC′.
(1)如圖②,將△ACD沿A′C′邊向上平移,使點A與點C′重合,連接A′D和BC,四邊形A′BCD是______形;
(2)如圖③,將△ACD的頂點A與A′點重合,然后繞點A沿逆時針方向旋轉(zhuǎn),使點D、A、B在同一直線上,則旋轉(zhuǎn)角為______度;連接CC′,四邊形CDBC′是______形;
(3)如圖④,將AC邊與A′C′邊重合,并使頂點B和D在AC邊的同一側(cè),設(shè)AB、CD相交于E,連接BD,四邊形ADBC是什么特殊四邊形?請說明你的理由.

【答案】分析:(1)利用平行四邊形的判定,對角線互相平分的四邊形是平行四邊形得出即可;
(2)利用旋轉(zhuǎn)變換的性質(zhì)以及直角梯形判定得出即可;
(3)利用等腰梯形的判定方法得出BD∥AC,AD=CE,即可得出答案.
解答:解:(1)平行四邊形;
證明:∵AD=AB,AA′=AC,
∴A′C與BD互相平分,
∴四邊形A′BCD是平行四邊形;

(2)∵DA由垂直于AB,逆時針旋轉(zhuǎn)到點D、A、B在同一直線上,
∴旋轉(zhuǎn)角為90度;
證明:∵∠D=∠B=90°,
A,D,B在一條直線上,
∴CD∥BC′,
∴四邊形CDBC′是直角梯形;
故答案為:90,直角梯;

(3)四邊形ADBC是等腰梯形;
證明:過點B作BM⊥AC,過點D作DN⊥AC,垂足分別為M,N,
有一張矩形紙片,將它沿對角線AC剪開,得到△ACD和△A′BC′,可得△ACD≌△A′BC′,
∴S△ACD=S△A′BC′
∴BM=ND,
∴BD∥AC,
∵AD=BC,
∴四邊形ADBC是等腰梯形.
點評:此題主要考查了圖形的剪拼與平行四邊形的判定和等腰梯形的判定、直角梯形的判定方法等知識,熟練掌握判定定理是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•巴中)①如圖1,在每個小方格都是邊長為1個單位長度的正方形方格紙中有△OAB,請將△OAB繞O順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA′B′.
②折紙:有一張矩形紙片ABCD如圖2,要將點D沿某條直線翻轉(zhuǎn)180°,恰好落在BC邊上的點D′處,請在圖中作出該直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(帶解析) 題型:解答題

①如圖1,在每個小方格都是邊長為1個單位長度的正方形方格紙中有△OAB,
請將△OAB繞點O順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA’B’;
②折紙:有一張矩形紙片ABCD(如圖2),要將點D沿某條直線翻折180°,恰好落在BC邊上的點D’
處,,請在圖中作出該直線。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

①如圖1,在每個小方格都是邊長為1個單位長度的正方形方格紙中有△OAB,

請將△OAB繞點O順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA’B’;

②折紙:有一張矩形紙片ABCD(如圖2),要將點D沿某條直線翻折180°,恰好落在BC邊上的點D’

處,,請在圖中作出該直線。

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 ①如圖5,在每個小方格都是邊長為1個單位長度的正方形方格紙中有△OAB,請將△OAB繞點O順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA’B’;

②折紙:有一張矩形紙片ABCD(如圖6),要將點D沿某條直線翻折180°,恰好落在BC邊上的點D’處,,請在圖中作出該直線。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年四川省巴中市中考數(shù)學(xué)試卷(解析版) 題型:解答題

①如圖1,在每個小方格都是邊長為1個單位長度的正方形方格紙中有△OAB,請將△OAB繞O順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△OA′B′.
②折紙:有一張矩形紙片ABCD如圖2,要將點D沿某條直線翻轉(zhuǎn)180°,恰好落在BC邊上的點D′處,請在圖中作出該直線.

查看答案和解析>>

同步練習(xí)冊答案