【題目】如圖,點(diǎn)分別為長方形的邊和邊上的一個動點(diǎn),將四邊形沿直線折疊,點(diǎn)恰好落在處,若,則此時的度數(shù)為____.
【答案】75°或105°
【解析】
根據(jù)題意作圖,再根據(jù)平角的定義和折疊的性質(zhì)可得∠BEF的度數(shù),再根據(jù)平行線的性質(zhì)可求∠EFC的度數(shù).
如圖1,
∵∠AEB′=30°,
∴∠BEB′=180°-∠AEB′=150°,
由折疊的性質(zhì)可得∠BEF=∠BEB′=75°,
∵四邊形ABCD是長方形,
∴AB∥CD,
∴∠EFC=180°∠BEF=105°.
如圖2,
∵∠AEB′=30°,
∴∠BEB′=180°-∠AEB′=150°,
∵折疊,
∴∠BEF=(360°-∠BEB′)=105°
∵四邊形ABCD是長方形,
∴AB∥CD,
∴∠EFC=180°∠BEF=75°.
故答案為:75°或105°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點(diǎn)D,點(diǎn)E為AC中點(diǎn)且BE平分∠ABD,連接BE交AD于點(diǎn)F,且BF=AC,過點(diǎn)D作DG∥AB,交AC于點(diǎn)G.
求證:
(1)∠BAD=2∠DAC
(2)EF=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,,.點(diǎn)在射線上,利用圖1,畫圖說明命題“有兩邊和其中一邊的對角分別相等的兩個三角形全等”是假命題.你畫圖時,選取的的長約為_____(精確到).
(2)為銳角,,點(diǎn)在射線上,點(diǎn)到射線的距離為,,若的形狀、大小是唯一確定的,則的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,已知,過點(diǎn)分別向軸作垂線,垂足分別是;
(1)點(diǎn)Q在直線上且與點(diǎn)P的距離為2,則點(diǎn)Q的坐標(biāo)為__________
(2)平移三角形,若頂點(diǎn)P平移后的對應(yīng)點(diǎn),畫出平移后的三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明到某超市購買A、B、C三種商品.其中A、B兩種商品的單價之和正好等于C商品的單價,小明前兩次購買商品的數(shù)量和總費(fèi)用如下表:
商品A的數(shù)量 | 商品B的數(shù)量 | 商品C的數(shù)量 | 總費(fèi)用(元) | |
第一次 | 2 | 3 | 2 | 230 |
第二次 | 1 | 4 | 3 | 290 |
(1)求A、B、C三種商品的單價;
(2)若小明第三次需要購置A、B、C三種商品共m個,其中C商品的數(shù)量是A商品的數(shù)量的2倍,恰好花了480元錢.
①求m的最大值;
②若小明在第三次購買A,B,C三種商品時正好遇上“買一送一”活動,即購買一個C商品即可贈送一個A商品或一個B商品(優(yōu)先贈送A商品),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在BC上,求證:△ABC是等腰三角形.
(2)如圖2,若點(diǎn)O在△ABC內(nèi)部,求證:AB=AC.
(3)若點(diǎn)O點(diǎn)在△ABC的外部,△ABC是等腰三角形還成立嗎?請畫圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D.下列四個命題:①當(dāng)x>0時,y>0; ②若a=﹣1,則b=3;③拋物線上有兩點(diǎn)P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,則y1>y2;④點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn)為E,點(diǎn)G,F(xiàn)分別在x軸和y軸上,當(dāng)m=2時,四邊形EDFG周長的最小值為6 .其中正確的命題有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com