【題目】如圖,(1)P是等腰三角形A BC底邊BC上的一人動點,過點PBC的垂線,交AB于點Q,交CA的延長線于點R。請觀察ARAQ,它們有何關(guān)系?并證明你的猜想。

(2)如果點P沿著底邊BC所在的直線,按由CB的方向運動到CB的延長線上時,(1)中所得的結(jié)論還成立嗎?請你在圖15(2)中完成圖 形,并給予證明。

【答案】直角三角形的角度運算規(guī)律;AR=AQ

【解析】試題分析:(1)由已知條件,根據(jù)等腰三角形兩底角相等及三角形兩直角互余的性質(zhì)不難推出∠PRC∠AQR的關(guān)系;

2)由已知條件,根據(jù)等腰三角形兩底角相等及三角形兩直角互余的性質(zhì)不難推出∠BQP∠PRC的關(guān)系.

解:(1AR=AQ,理由如下:

∵AB=AC,

∴∠B=∠C

∵RP⊥BC,

∴∠B+∠BQP=∠C+∠PRC=90°,

∴∠BQP=∠PRC

∵∠BQP=∠AQR,

∴∠PRC=∠AQR,

∴AR=AQ;

2)猜想仍然成立.證明如下:

∵AB=AC,

∴∠ABC=∠C

∵∠ABC=∠PBQ

∴∠PBQ=∠C,

∵RP⊥BC,

∴∠PBQ+∠BQP=∠C+∠PRC=90°

∴∠BQP=∠PRC,

∴AR=AQ

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD,OP是∠BOC的平分線.

(1)請寫出圖中所有∠EOC的補角 ____________________;

(2)如果∠POC:∠EOC=2:5.求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角ABC中,∠C=90°,點D,E分別是邊AC,BC上的點,點P是一動點.令∠PDA=1,PEB=2,DPE=α.

(1)若點P在線段AB上,如圖①,且∠α=50°,則∠1+2=      

(2)若點P在斜邊AB上運動,如圖②,則∠α、1、2之間的關(guān)系為      

(3)如圖③,若點P在斜邊BA的延長線上運動(CE<CD),請直接寫出∠α、1、2之間的關(guān)系:      

(4)若點P運動到ABC形外(只需研究圖④情形),則∠α、1、2之間有何關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市今年中考理、化實驗操作考試,采用學生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個物理實驗(用紙簽A、B、C表示)和三個化學實驗(用紙簽D、E、F表示)中各抽取一個進行考試.小剛在看不到紙簽的情況下,分別從中各隨機抽取一個.

(1)用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;

(2)小剛抽到物理實驗B和化學實驗F(記作事件M)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個小正方形的邊長均為1)依次進行位似變換、軸對稱變換和平移變換后得到△A3B3C3

1△ABC△A1B1C1的位似比等于

2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對稱圖形△A2B2C2;

3)請寫出△A3B3C3是由△A2B2C2怎樣平移得到的?

4)設(shè)點Px,y)為△ABC內(nèi)一點,依次經(jīng)過上述三次變換后,點P的對應(yīng)點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市對今年元旦期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

1)該超市元旦期間共銷售   個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應(yīng)的扇形圓心角是   度;

2)補全條形統(tǒng)計圖;

3)如果該超市的另一分店在元旦期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC的三個頂點分別為A23)、B31)、C﹣2﹣2).

1)請在圖中作出ABC關(guān)于直線x=﹣1的軸對稱圖形DEFA、B、C的對應(yīng)點分別是DE、F),并直接寫出D、EF的坐標;

2)求四邊形ABED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料

小明遇到這樣一個問題:求計算所得多項式的一次項系數(shù).

小明想通過計算所得的多項式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對簡潔的方法.

他決定從簡單情況開始,先找所得多項式中的一次項系數(shù).通過觀察發(fā)現(xiàn):

也就是說,只需用中的一次項系數(shù)1乘以中的常數(shù)項3,再用中的常數(shù)項2乘以中的一次項系數(shù)2,兩個積相加,即可得到一次項系數(shù).

延續(xù)上面的方法,求計算所得多項式的一次項系數(shù).可以先用的一次項系數(shù)1, 的常數(shù)項3, 的常數(shù)項4,相乘得到12;再用的一次項系數(shù)2, 的常數(shù)項2, 的常數(shù)項4,相乘得到16;然后用的一次項系數(shù)3, 的常數(shù)項2, 的常數(shù)項3,相乘得到18.最后將12,16,18相加,得到的一次項系數(shù)為46

參考小明思考問題的方法,解決下列問題:

1)計算所得多項式的一次項系數(shù)為

2)計算所得多項式的一次項系數(shù)為

3)若計算所得多項式的一次項系數(shù)為0,則=_________

4)若的一個因式,則的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,點C是在過點B的切線上,且OCOA,OCAB于點P.

(1)判斷△CBP的形狀,并說明理由;

(2)若⊙O的半徑為6,AP=,求BC的長.

查看答案和解析>>

同步練習冊答案