【題目】一輛貨車從A地開往B地,一輛小汽車從B地開往A地.同時出發(fā),都勻速行駛,各自到達(dá)終點(diǎn)后停止.設(shè)貨車、小汽車之間的距離為s(千米),貨車行駛的時間為t(小時),S與t之間的函數(shù)關(guān)系如圖所示.下列說法中正確的有( )

①A,B兩地相距60千米:
②出發(fā)1小時,貨車與小汽車相遇;
③出發(fā)1.5小時,小汽車比貨車多行駛了60千米;
④小汽車的速度是貨車速度的2倍.
A.1個
B.2個
C.3個
D.4個

【答案】C
【解析】解:(1)由圖象可知,當(dāng)t=0時,即貨車、汽車分別在A、B兩地,s=120,

所以A、B兩地相距120千米,故①錯誤;(2)當(dāng)t=1時,s=0,表示出發(fā)1小時,貨車與小汽車相遇,故②正確;(3)根據(jù)圖象知,汽車行駛1.5小時達(dá)到終點(diǎn)A地,貨車行駛3小時到達(dá)終點(diǎn)B地,

故貨車的速度為:120÷3=40(千米/小時),

出發(fā)1.5小時貨車行駛的路程為:1.5×40=60(千米),

小汽車行駛1.5小時達(dá)到終點(diǎn)A地,即小汽車1.5小時行駛路程為120千米,

故出發(fā)1.5小時,小汽車比貨車多行駛了60千米,故③正確;(4)∵由(3)知小汽車的速度為:120÷1.5=80(千米/小時),貨車的速度為40(千米/小時),

∴小汽車的速度是貨車速度的2倍,故④正確.

∴正確的有②③④三個.

故答案為:C.

①根據(jù)圖象中t=0時,s=120實(shí)際意義可得;②根據(jù)圖象中t=1時,s=0的實(shí)際意義可判斷;③由圖象t=1.5和t=3的實(shí)際意義,得到貨車和小汽車的速度,進(jìn)一步得到1.5小時后的路程,可判斷正誤;④由③可知小汽車的速度是貨車速度的2倍。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式x3﹣x的因式為( 。
A.x、(x﹣1)
B.(x+1)
C.x2﹣x
D.以上都是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,并解答問題.

材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.

解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)

∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1

==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.

解答:

(1)將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.

(2)試說明的最小值為8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC交于點(diǎn)D、E,若四邊形ODBE的面積為9,則k的值為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單項(xiàng)式2a的系數(shù)是(
A.2
B.2a
C.1
D.a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.過點(diǎn)A1(1,0)作x軸的垂線,交直線y=2x于點(diǎn)B1;點(diǎn)A2與點(diǎn)O關(guān)于直線A1B1對稱,過點(diǎn)A2作x軸的垂線,交直線y=2x于點(diǎn)B2;點(diǎn)A3與點(diǎn)O關(guān)于直線A2B2對稱.過點(diǎn)A3作x軸的垂線,交直線y=2x于點(diǎn)B3;…按此規(guī)律作下去.則點(diǎn)A3的坐標(biāo)為 , 點(diǎn)Bn的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中顯示了10名同學(xué)平均每周用于閱讀課外書的時間和用于看電視的時間(單位:小時)。

(1)用有序?qū)崝?shù)對表示圖中各點(diǎn)。

(2)圖中有一個點(diǎn)位于方格的對角線上,這表示什么意思?

(3)圖中方格紙的對角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?

(4)估計一下你每周用于閱讀課外書的時間和用于看電視的時間,在圖上描出來,這個點(diǎn)位于什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AQ=PQ,PR⊥AB于點(diǎn)R,PS⊥AC于點(diǎn)S,PR=PS,則下列結(jié)論:①點(diǎn)P在∠A的角平分線上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.正確的有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1 ,AB=10米,AE=15米.(i=1 是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732

查看答案和解析>>

同步練習(xí)冊答案