證明對(duì)角線互相平分的四邊形是平行四邊形。

 

答案:
解析:

已知:四邊形ABCDACBD為它的對(duì)角線,交于點(diǎn)O,且AO=CO,BO=DO,求證:四邊形ABCD為平行四邊形。

證明:在ABOCDO

∴△ABO≌△CDO

AB=CD

同理可證ADO≌△CBO

AD=BC

四邊形ABCD為平行四邊形。

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、“對(duì)角線不互相平分的四邊形不是平行四邊形”,這個(gè)命題用反證法證明應(yīng)假設(shè)
對(duì)角線不互相平分的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•西城區(qū)模擬)我們?cè)趲缀蔚膶W(xué)習(xí)中能發(fā)現(xiàn),很多圖形的性質(zhì)定理與判定定理之間有著一定的聯(lián)系.例如:菱形的性質(zhì)定理“菱形的對(duì)角線互相垂直”和菱形的判定定理“對(duì)角線互相垂直的平行四邊形是菱形”就是這樣.但是課本中對(duì)菱形的另外一個(gè)性質(zhì)“菱形的對(duì)角線平分一組對(duì)角”卻沒有給出類似的判定定理,請(qǐng)你利用如圖所示圖形研究一下這個(gè)問題.
要求:如果有類似的判定定理,請(qǐng)寫出已知、求證并證明.如果沒有,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

四邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖1,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).
(1)如圖2,畫出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn).
(2)如圖3,作出四邊形ABCD的一個(gè)準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).
(3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長(zhǎng)BP交CD于點(diǎn)E,延長(zhǎng)DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).
(4)試研究四邊形的準(zhǔn)等距點(diǎn)個(gè)數(shù)的情況.(說出相應(yīng)四邊形的特征及此時(shí)準(zhǔn)等距點(diǎn)的個(gè)數(shù),不必證明)
①當(dāng)四邊形的對(duì)角線互相垂直且任何一條對(duì)角線不平分另一條對(duì)角線或者對(duì)角線互相平分且不垂直時(shí),準(zhǔn)等距點(diǎn)的個(gè)數(shù)為
0
0
個(gè);
②當(dāng)四邊形的對(duì)角線既不垂直,又不互相平分,且有一條對(duì)角線的中垂線經(jīng)過另一對(duì)角線的中點(diǎn)時(shí),準(zhǔn)等距點(diǎn)的個(gè)數(shù)為
1
1
個(gè);
③當(dāng)四邊形的對(duì)角線既不垂直又不互相平分,且任何一條對(duì)角線的中垂線都不經(jīng)過另一條對(duì)角線的中點(diǎn)時(shí),準(zhǔn)等距點(diǎn)的個(gè)數(shù)為
2
2
個(gè);
④當(dāng)四邊形的對(duì)角線互相垂直且至少有一條對(duì)角線平分另一條對(duì)角線時(shí),準(zhǔn)等距點(diǎn)有
無數(shù)
無數(shù)
個(gè)(注意點(diǎn)P不能畫在對(duì)角線的中點(diǎn)上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:047

用向量的方法證明:對(duì)角線互相平分的四邊形是平行四邊形.

已知:在圖中,ABCD是四邊形,對(duì)角線AC與BD交于O,且AO=OC,DO=OB.

求證:ABCD是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案