閱讀理解題:
(1)如圖所示,在△ABC中,AD是BC邊上的中線,且AD=
1
2
BC.求證:∠BAC=90°.
證明:∵BD=CD,AD=
1
2
BC,∴AD=BD=DC,
∴∠B=∠BAD,∠C=∠CAD,
∵∠B+∠BAD+∠CAD+∠C=180°,
∴∠BAD+∠CAD=90°,即∠BAC=90°.
(2)此題實(shí)際上是直角三角形的另一個(gè)判定定理,請(qǐng)你用文字語(yǔ)言敘述出來(lái).
(3)直接運(yùn)用這個(gè)結(jié)論解答下列題目:一個(gè)三角形一邊長(zhǎng)為2,這邊上的中線長(zhǎng)為1,另兩邊之和為1+
3
,求這個(gè)三角形的面積.
(1)為題目信息,不用解答.

(2)根據(jù)題意用語(yǔ)言表述為:如果三角形一條邊上的中線等于這條邊的一半,那么這個(gè)三角形是直角三角形.

(3)因?yàn)橐粋(gè)三角形一邊長(zhǎng)為2,這邊上的中線長(zhǎng)為1,所以這個(gè)三角形為直角三角形,
設(shè)一邊長(zhǎng)為x,則另一邊長(zhǎng)為:[(1+
3
)-x],
根據(jù)勾股定理,[(1+
3
)-x]2+x2=4,解得x=1或
3

根據(jù)直角三角形的面積可得
3
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面四個(gè)圖形中不是軸對(duì)稱(chēng)圖形的是(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分6分)  
常用的確定物體位置的方法有兩種.

如圖,在4×4個(gè)邊長(zhǎng)為1的正方形組成的方格中,標(biāo)有A,B兩點(diǎn). 請(qǐng)你用兩種不同方法表述點(diǎn)B相對(duì)點(diǎn)A的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知a,b、c是三角形的三邊,且滿足b2=(c+a)(c-a),5a-3c=0,則sinA+sinB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形中的△ABC是直角三角形的有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在正三角形ABC內(nèi)有一點(diǎn)M,且MA=3,MB=4,MC=5.
(1)求∠BMA的度數(shù);
(2)求正三角形ABC的面積.
(提示:把△ACM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,使點(diǎn)C與點(diǎn)B重合)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形紙片ABCD中,剪掉一塊三角形紙片ABC,剩余部分是一個(gè)面積為30cm2的Rt△ACD,其中∠ACD=90°.若DC=12cm,AB=4cm,BC=3cm.求剪掉的△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

由下列條件不能判定△ABC為直角三角形的是(  )
A.∠A+∠B=∠CB.∠A:∠B:∠C=1:3:2
C.(b+c)(b-c)=a2D.a(chǎn)=
1
3
,b=
1
4
,c=
1
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四邊形ABCD中,∠D=90°,AB=12,BC=13,CD=4,AD=3,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案