【題目】如圖,一個(gè)直角三角形紙片,剪去直角后,得到一個(gè)四邊形,則∠1+∠2等于( )
A.270°
B.180°
C.135°
D.90°
【答案】A
【解析】解:∵∠5=90°,
∴∠3+∠4=180°﹣90°=90°,
∵∠3+∠4+∠1+∠2=360°,
∴∠1+∠2=360°﹣90°=270°,
故選:A.
【考點(diǎn)精析】本題主要考查了三角形的內(nèi)角和外角和多邊形內(nèi)角與外角的相關(guān)知識(shí)點(diǎn),需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=x2的圖象只要把函數(shù)y=(x﹣3)2的圖象( 。
A.向左平移3個(gè)單位B.向右平移3個(gè)單位
C.向上平移3個(gè)單位D.向下平移3個(gè)單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全國愛眼日是每年的6月6日,2013年世界愛眼日主題確定為“關(guān)愛青少年眼健康”,某中學(xué)為了解該校學(xué)生的視力情況,采用抽樣調(diào)查的方式,從視力正常、輕度近視、中度近視、重度近視四個(gè)方面調(diào)查了若干名學(xué)生的視力情況,并根據(jù)調(diào)查結(jié)果制作了如下兩幅統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息解答下列問題:
(1)一共隨機(jī)調(diào)查了多少人?
(2)補(bǔ)全人數(shù)統(tǒng)計(jì)圖;
(3)若該校共有1500名學(xué)生,請你估計(jì)該校學(xué)生視力正常的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對角線OB的中點(diǎn),點(diǎn)E(8,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D、E,且tan∠BOA=.
(1)求反比例函數(shù)的解析式和n的值;
(2)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求G點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為極大地滿足人民生活的需求,豐富市場供應(yīng),某區(qū)農(nóng)村溫棚設(shè)施農(nóng)業(yè)迅速發(fā)展,溫棚種植面積在不斷擴(kuò)大.在耕地上培成一行一行的長方形土埂,按順序間隔種植不同農(nóng)作物的方法叫分壟間隔套種.科學(xué)研究表明:在塑料溫棚中分壟間隔套種高、矮不同的蔬菜和水果(同一種緊挨在一起種植不超過兩壟),可增加它們的光合作用,提高單位面積的產(chǎn)量和經(jīng)濟(jì)效益.
現(xiàn)有一個(gè)種植總面積為540 m2的長方形塑料溫棚,分壟間隔套種草莓和西紅柿共24壟,種植的草莓或西紅柿單種農(nóng)作物的總壟數(shù)不低于10壟,又不超過14壟(壟數(shù)為正整數(shù)),它們的占地面積、產(chǎn)量、利潤分別如下:
占地面積(m2/壟) | 產(chǎn)量(千克/壟) | 利潤(元/千克) | |
西紅柿 | 30 | 160 | 1.1 |
草莓 | 15 | 50 | 1.6 |
(1)若設(shè)草莓共種植了壟,通過計(jì)算說明共有幾種種植方案,分別是哪幾種;
(2)在這幾種種植方案中,哪種方案獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com