【題目】如圖,在△ABC中,AB=AC=2,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為_____.
【答案】3﹣3.
【解析】
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,連接EF,過(guò)點(diǎn)E作EM⊥CF于點(diǎn)M,過(guò)點(diǎn)A作AN⊥BC于點(diǎn)N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通過(guò)角的計(jì)算可得出∠FAE=60°,結(jié)合旋轉(zhuǎn)的性質(zhì)可證出△ADE≌△AFE(SAS),進(jìn)而可得出DE=FE,設(shè)CE=2x,則CM=x,EM=x、FM=4x-x=3x、EF=ED=6-6x,在Rt△EFM中利用勾股定理可得出關(guān)于x的一元二次方程,解之可得出x的值,再將其代入DE=6-6x中即可求出DE的長(zhǎng).
將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)120°得到△ACF,連接EF,過(guò)點(diǎn)E作EM⊥CF于點(diǎn)M,過(guò)點(diǎn)A作AN⊥BC于點(diǎn)N,如圖所示,
,
∵AB=AC=2,∠BAC=120°,
∴BN=CN,∠B=∠ACB=30°,
在Rt△BAN中,∠B=30°,AB=2,
∴AN=AB=,BN= =3,
∴BC=6,
∵∠BAC=12°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°,
在△ADE和△AFE中,,
∴△ADE≌△AFE(SAS),
∴DE=FE,
∵BD=2CE,BD=CF,∠ACF=∠B=30°,
∴設(shè)CE=2x,則CM=x,EM=x,F(xiàn)M=4xx=3x,EF=ED=66x.
在Rt△EFM中,FE=66x,FM=3x,EM=x,
∴EF2=FM2+EM2,,即(66x)2=(3x)2+(x)2,
解得:x1=,x2= (不合題意,舍去),
∴DE=66x=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次綜合實(shí)踐活動(dòng)中,小明要測(cè)某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長(zhǎng)BC為80m.她先測(cè)得∠BCA=35°,然后從C點(diǎn)沿AC方向走30m到達(dá)D點(diǎn),又測(cè)得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計(jì),結(jié)果用含非特殊角的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)小組同時(shí)從甲地出發(fā),勻速步行到乙地,甲乙兩地相距7500米,第一組的步行速度是第二組的1.2倍,并且比第二組早15分鐘到達(dá)乙地.設(shè)第二組的步行速度為x千米/小時(shí),根據(jù)題意可列方程是( 。
A.﹣ =15
B.﹣ =
C.﹣ =15
D.﹣ =
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點(diǎn)E,CF⊥BC交BD于點(diǎn)F,且AE=CF.求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知|a+b|+|a-b|-2b=0,在數(shù)軸上給出關(guān)于a,b的四種位置關(guān)系如圖所示,則可能成立的有( )
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為4,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開(kāi)始移動(dòng),甲點(diǎn)依順時(shí)針?lè)较颦h(huán)行,乙點(diǎn)依逆時(shí)針?lè)较颦h(huán)行,若乙的速度是甲的速度的3倍,則它們第2018次相遇在邊 ( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y= x+4與x軸、y軸分別交于A、B兩點(diǎn),把△A0B繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AO′B′,則點(diǎn)B′的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com