(2009•衢江區(qū)一模)如圖,是由邊長為1 m的正方形地磚鋪設的地面示意圖,小明沿圖中所示的折線從A?B?C所走的路程為( )m.

A.
B.
C.2
D.2
【答案】分析:根據(jù)圖形,運用勾股定理分別求出AB、BC的長,即可解答.
解答:解:由圖片可知:AB、BC均為長2寬1的矩形的對角線,AB==m,BC==m,因此AB+BC=2m,故選C.
點評:本題考查了正方形,矩形的性質(zhì)以及勾股定理的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年浙江省衢州市衢江區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖平面直角坐標系中,拋物線y=-x2+x+2交x軸于A、B兩點,交y軸于點C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動,交x軸于點D,交拋物線于點E,交BC于點F.求當m為何值時,EF=DF?
(3)連接CE和BE后,對于問題“是否存在這樣的點E,使△BCE的面積最大”,小紅同學認為:“當E為拋物線的頂點時,△BCE的面積最大.”她的觀點是否正確?提出你的見解,若△BCE的面積存在最大值,請求出點E的坐標和△BCE的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省衢州市衢江區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖,P為x軸正半軸上一點,過點P作x軸的垂線,交函數(shù)的圖象于點A,交函數(shù)的圖象于點B,過點B作x軸的平行線,交于點C,連接AC.
(1)當點P的坐標為(2,0)時,求△ABC的面積;
(2)當點P的坐標為(t,0)時,△ABC的面積是否隨t值的變化而變化?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河南省鄭州市鞏義市中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖平面直角坐標系中,拋物線y=-x2+x+2交x軸于A、B兩點,交y軸于點C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動,交x軸于點D,交拋物線于點E,交BC于點F.求當m為何值時,EF=DF?
(3)連接CE和BE后,對于問題“是否存在這樣的點E,使△BCE的面積最大”,小紅同學認為:“當E為拋物線的頂點時,△BCE的面積最大.”她的觀點是否正確?提出你的見解,若△BCE的面積存在最大值,請求出點E的坐標和△BCE的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河南省鄭州市鞏義市中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖,P為x軸正半軸上一點,過點P作x軸的垂線,交函數(shù)的圖象于點A,交函數(shù)的圖象于點B,過點B作x軸的平行線,交于點C,連接AC.
(1)當點P的坐標為(2,0)時,求△ABC的面積;
(2)當點P的坐標為(t,0)時,△ABC的面積是否隨t值的變化而變化?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年海南省?谑兄锌紨(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖平面直角坐標系中,拋物線y=-x2+x+2交x軸于A、B兩點,交y軸于點C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動,交x軸于點D,交拋物線于點E,交BC于點F.求當m為何值時,EF=DF?
(3)連接CE和BE后,對于問題“是否存在這樣的點E,使△BCE的面積最大”,小紅同學認為:“當E為拋物線的頂點時,△BCE的面積最大.”她的觀點是否正確?提出你的見解,若△BCE的面積存在最大值,請求出點E的坐標和△BCE的最大面積.

查看答案和解析>>

同步練習冊答案