設(shè)一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是,方差
(Ⅰ)證明:方差也可表示為;并且s2≥0,當(dāng)x1=x2=…=xn=時,方差s2取最小值0;
(Ⅱ)求滿足方程的一切實數(shù)對(x,y).
【答案】分析:(1)根據(jù)方差的定義的公式展開,進行整理得出命題的正確性;
(2)結(jié)合方差s2=[x2+(y-1)2+(x-y)2]-(2=-(-2,當(dāng)且僅當(dāng)-x=y-1=x-y==-時,求出即可.
解答:解:(1)∵,
=[x12+-2x1+x22+-2+…+xn2+-2xn],
=(x12+x22+…+xn2)+++…+)+(-2x1-2-…-2xn],
=(x12+x22+…+xn2)++(-2x1-2-…-2xn],
=(x12+x22+…+xn2)+-2(x1+x2+…+xn],
=(x12+x22+…+xn2)-,
;
當(dāng)x1=x2=…=xn=時,
s2=-=0,
∴此時方差s2取最小值0;

(2)設(shè)數(shù)據(jù)-x,(y-1),x-y的平均數(shù)為:
=[(-x)+(y-1)+(x-y)],
=-,
方差s2=[x2+(y-1)2+(x-y)2]-(2=-(-2,
當(dāng)且僅當(dāng)-x=y-1=x-y==-時,
s2=0,
此時x=,y=
點評:此題主要考查了方差公式的證明以及綜合應(yīng)用,正確的將公式變形是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是
.
x
,方差s2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]

(Ⅰ)證明:方差也可表示為s2=
1
n
(
x
2
1
+
x
2
2
+…+
x
2
n
)-
.
x
 
2
;并且s2≥0,當(dāng)x1=x2=…=xn=
.
x
時,方差s2取最小值0;
(Ⅱ)求滿足方程x2+(y-1)2+(x-y)2=
1
3
的一切實數(shù)對(x,y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)是m,求下列各組數(shù)據(jù)的平均數(shù):
(1)x1+3,x2+3,…,xn+3;答:
 
;
(2)2x1-3,2x2-3,…,2xn-3.答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

設(shè)一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是數(shù)學(xué)公式,方差數(shù)學(xué)公式
(Ⅰ)證明:方差也可表示為數(shù)學(xué)公式;并且s2≥0,當(dāng)x1=x2=…=xn=數(shù)學(xué)公式時,方差s2取最小值0;
(Ⅱ)求滿足方程數(shù)學(xué)公式的一切實數(shù)對(x,y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)一組數(shù)據(jù)是x1,x2,…,xn,它們的平均數(shù)是
.
x
,方差s2=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
2
]

(Ⅰ)證明:方差也可表示為s2=
1
n
(
x21
+
x22
+…+
x2n
)-
.
x
 
2
;并且s2≥0,當(dāng)x1=x2=…=xn=
.
x
時,方差s2取最小值0;
(Ⅱ)求滿足方程x2+(y-1)2+(x-y)2=
1
3
的一切實數(shù)對(x,y).

查看答案和解析>>

同步練習(xí)冊答案