【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
①該產(chǎn)品90天內(nèi)日銷售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 3 | 6 | 10 | … |
日銷售量(m件) | 198 | 194 | 188 | 180 | … |
②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價(jià)格(元/件) | x+60 | 100 |
(1)求m關(guān)于x的一次函數(shù)表達(dá)式;
(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本)】
(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫出結(jié)果.
【答案】(1)m=-2x+200;(2)在90天內(nèi)該產(chǎn)品第40天的銷售利潤(rùn)最大,最大利潤(rùn)是7200元;(3)在該產(chǎn)品銷售的過程中,共有46天銷售利潤(rùn)不低于5400元.
【解析】
試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式即可;
(2)設(shè)利潤(rùn)為y元,則當(dāng)1≤x<50時(shí),y=-2x2+160x+4000;當(dāng)50≤x≤90時(shí),y=-120x+12000,分別求出各段上的最大值,比較即可得到結(jié)論;
(3)直接寫出在該產(chǎn)品銷售的過程中,共有46天銷售利潤(rùn)不低于5400元.
試題解析:(1)∵m與x成一次函數(shù),
∴設(shè)m=kx+b,將x=1,m=198,x=3,m=194代入,得:
解得:.
所以m關(guān)于x的一次函數(shù)表達(dá)式為m=-2x+200;
(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,y關(guān)于x的函數(shù)表達(dá)式為:,
當(dāng)1≤x<50時(shí),y=-2x2+160x+4000=-2(x-40)2+7200,
∵-2<0,
∴當(dāng)x=40時(shí),y有最大值,最大值是7200;
當(dāng)50≤x≤90時(shí),y=-120x+12000,
∵-120<0,
∴y隨x增大而減小,即當(dāng)x=50時(shí),y的值最大,最大值是6000;
綜上所述,當(dāng)x=40時(shí),y的值最大,最大值是7200,即在90天內(nèi)該產(chǎn)品第40天的銷售利潤(rùn)最大,最大利潤(rùn)是7200元;
(3)在該產(chǎn)品銷售的過程中,共有46天銷售利潤(rùn)不低于5400元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒.過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.當(dāng)四邊形AEFD是菱形時(shí),t的值為( )
A. 20秒 B. 18秒 C. 12 秒 D. 6秒
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織了“健康教育”手抄報(bào)征集活動(dòng),現(xiàn)從中抽取部分作品,按A、B、C、D四個(gè)等級(jí)進(jìn)行獎(jiǎng)勵(lì),并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整統(tǒng)計(jì)圖.
(1)求抽取了多少份作品.
(2)被抽取作品中B等級(jí)有多少份?并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中D等級(jí)所對(duì)的圓心角是多少度?
(4)若全校共征集到作品600份,請(qǐng)估計(jì)A作品有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,D是等邊△ABC的邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊△DCF,連接AF,你能發(fā)現(xiàn)AF與BD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論;
(2)類比猜想:如圖②,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線時(shí),其他作法與(1)相同,猜想AF與BD在(1)中的結(jié)論是否仍然成立?
(3)深入探究:Ⅰ.如圖③,當(dāng)動(dòng)點(diǎn)D在等邊△ABC邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與B不重合),連接DC,以DC為邊在BC上方和下方分別作等邊△DCF和等邊△DCF′,連接AF,BF′,探究AF,BF′與AB有何數(shù)量關(guān)系?并證明你的探究的結(jié)論;Ⅱ.如圖④,當(dāng)動(dòng)點(diǎn)D在等邊△ABC的邊BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),其他作法與圖③相同,Ⅰ中的結(jié)論是否成立?若不成立,是否有新的結(jié)論?并證明你得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)附近的文具用品商店最近新進(jìn)了一批涂卡筆,每支8元,為了合理定價(jià),在第一周試行機(jī)動(dòng)價(jià)格,賣出時(shí)每支以10元為標(biāo)準(zhǔn),超出10元的部分記為正,不足10元的部分記為負(fù),文具店售貨員記錄了第一周涂卡筆的售價(jià)情況和售出情況:
(1)這一周文具用品店的涂卡筆哪天售出的單價(jià)最高?最高單價(jià)是多少元?
(2)這一周文具用品店出售此種涂卡筆的收益如何?(盈利或虧損的錢數(shù))
(3)文具用品店為了促銷這種涂卡筆,決定從下周一起推出兩種促銷方式:
方式一:購買不超過3支涂卡筆,每支12元,超出3支的部分,每支打九折;
方式二:每支售價(jià)12元,購買一支涂卡筆就贈(zèng)送成本價(jià)為0.8元的礦泉水一瓶。
有名同學(xué)想一次性購買6支涂卡筆,文具店希望該同學(xué)通過哪種方式購買才會(huì)使文具店盈利較多?請(qǐng)通過計(jì)算說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點(diǎn)C與點(diǎn)A重合,則下列結(jié)論錯(cuò)誤的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-3,0),B(0,-3),C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S
關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰Rt△PCQ,∠PCQ=90°.探究并解決下列問題:
(1)如圖1,若點(diǎn)P在線段AB上,且AC=1+,PA=,求線段PC的長(zhǎng).
(2)如圖2,若點(diǎn)P在AB的延長(zhǎng)線上,猜想PA2、PB2、PC2之間的數(shù)量關(guān)系,并證明.
(3)若動(dòng)點(diǎn)P滿足,則的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個(gè)結(jié)論:①abc>0;②4ac﹣b2<0;③4a+c<2b;④3b+2c<0;⑤m(am+b)+b<a(m≠﹣1).其中結(jié)論正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com