【題目】為慶祝即將到來的“三月三”壯族傳統(tǒng)節(jié)日,某校舉行了書法比賽,賽后隨機抽查部分參賽同學的成績,并制作成如下圖表:
請根據(jù)如上圖表提供的信息,解答下列問題:
(1)這次隨機抽查了 名學生,表中的數(shù) . .
(2)請在圖中補全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計圖,分數(shù)段所對應(yīng)扇形的圓心角為 度;
(4)全校共有名學生參加比賽,估計該校成績范圍內(nèi)的學生有多少人?
【答案】(1)200,,90,0.3;(2)見解析;(3);(4)240人.
【解析】
(1)利用60≤x<70的頻數(shù)與頻率即可求出調(diào)查的總?cè)藬?shù);再利用70≤x<80的頻率求出頻數(shù)m,利用80≤x<90的頻數(shù)求出頻率;(2)根據(jù)所求的頻數(shù)即可補全直方圖;(3)利用360°×0.15即可求出分數(shù)段所對應(yīng)扇形的圓心角度數(shù);(4)先求出樣本中的頻率,再乘以全校人數(shù)即可.
解:(1)這次隨機抽查了30÷0.15=200名學生,
200×0.45=90,60÷200=0.3
(2)補全直方圖如下圖所示,
(3)分數(shù)段所對應(yīng)扇形的圓心角為360°×0.15=
(4)該校成績范圍內(nèi)的學生有人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關(guān)于二次函數(shù)y=-x2-2x+3說法正確的是( 。
A. 當時,函數(shù)最大值4
B. 當時,函數(shù)最大值2
C. 將其圖象向上平移3個單位后,圖象經(jīng)過原點
D. 將其圖象向左平移3個單位后,圖象經(jīng)過原點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0).B(4,0),C(0,2)三點,直線y=kx+t經(jīng)過B.C兩點,點D是拋物線上一個動點,過點D作y軸的平行線,與直線BC相交于點E.
(1)求直線和拋物線的解析式;
(2)當點D在直線BC下方的拋物線上運動,使線段DE的長度最大時,求點D的坐標;
(3)點D在運動過程中,若使O.C.D.E為頂點的四邊形為平行四邊形時,請直接寫出滿足條件的所有點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點C作∠BCD=∠CAB交AB的延長線于點D,過點O作直徑EF∥BC,交AC于點G.
(1)求證:CD是⊙O的切線.
(2)若⊙O的半徑為2,∠BCD=30°.
①連接AE、DE,求證:四邊形ACDE是菱形.
②當點P是線段AD上的一動點時,求PF+PG的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,將沿直線BE折疊后得到 ,延長BG交CD于點F,若 則FD的長為( )
A. 1B. 2C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】初三某班同學小戴想根據(jù)學習函數(shù)的經(jīng)驗,通過研究一個未學過的函數(shù)的圖象,從而探究其各方面性質(zhì).
下表是函數(shù)y與自變量x的幾組對應(yīng)值:
x | … | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 12 | … |
y | … | -4 | 0 | 4 | 8 | 12 | 9 | 7.2 | 6 | 4 | 3 | … |
(1)在平面直角坐標系xOy中,每個小正方形的邊長為一個單位長度,描出了以上表中各對對應(yīng)值為坐標的點,請根據(jù)描出的點,畫出該函數(shù)的圖象.
(2)請根據(jù)畫出的函數(shù)圖象,直接寫出該函數(shù)的關(guān)系式y=______(請寫出自變量的取值范圍),并寫出該函數(shù)的一條性質(zhì):______.
(3)當直線y=-x+b與該函數(shù)圖象有3個交點時,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與反比例函數(shù)在第一象限內(nèi)的圖像交于點,連接.若, ,則的值是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個茶葉廠,該廠的茶葉主要有兩種銷售方式,一種方式是賣給茶葉經(jīng)銷商,另一種方式是在各超市的柜臺進行銷售,每年該廠生產(chǎn)的茶葉都可以全部銷售,該茶葉廠每年可以生產(chǎn)茶葉100萬盒,其中,賣給茶葉經(jīng)銷商每盒茶葉的利潤y1(元)與銷售量x(萬盒)之間的函數(shù)關(guān)系如圖15所示;在各超市柜臺銷售的每盒利潤y2(元)與銷售量x(萬盒)之間的函數(shù)關(guān)系為:當0≤x<40時, y2=—0.75x+80,
當40≤x≤100時 y2=40.
(1)寫出該茶葉廠賣給茶葉經(jīng)銷商的銷售總利潤z1(萬元)與其銷售量x(萬盒)之間的函數(shù)關(guān)系式,并指出x的取值范圍;
(2)寫出該茶葉廠在各超市柜臺銷售的總利潤z2(萬元)與賣給茶葉經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式及x取值范圍;
(3)求該茶葉廠每年的總利潤w(萬元)與賣給茶葉經(jīng)銷商的銷售量x(萬盒)之間的函數(shù)關(guān)系式,并幫助該茶葉廠確定賣給茶葉經(jīng)銷商和在各超市柜臺的銷量各為多少萬盒時,該公司的年利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com