【題目】在平面直角坐標系中,點A0b)、點Ba,0)、點Dd,0)且a、b、c滿足DEx軸且∠BED=ABD,BEy軸于點C,AEx軸于點F

1)求點AB、D的坐標;

2)求點C、E、F的坐標.

【答案】(1)A(0,3) B(-1,0) D(2,0);(2) E(2,1) F(3,0)

【解析】

1)由非負數(shù)的性質(zhì)可求得ab、d的值,可求得AB、D的坐標;

2)由條件可證明ABO≌△BED,可求得DEBD的長,可求得E點坐標,再求得直線AEBE的解析式,可求得C、F點坐標.

解:(1)∵,

A0,3),B-10),D2,0);

2)∵A0,3),B-1,0),D2,0),

OB=1,OD=2,OA=3

AO=BD,

ABOBED中,

,

∴△ABO≌△BEDAAS),

DE=BO=1,

E21),

設(shè)直線AE解析式為:y=kx+b,直線BE解析式為:y=mx+n,如圖1

把點A、E代入y=kx+b,把點BE代入y=mx+n,得

,

解得:,,

∴直線AE解析式為:

直線BE解析式為:,

∴直線,令,解得:,

∴點F為:,

∴直線,令,解得:

∴點C為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑期臨近,重慶市某中學(xué)校為了豐富學(xué)生的暑期文化生活,同時幫助孩子融洽親子關(guān)系,增進親子間的情感交流,計劃組織學(xué)生去某景區(qū)參加為期一周的親子一家游活動. 若報名參加此次活動的學(xué)生人數(shù)共有56人,其中要求參加的每名學(xué)生都至少需要一名家長陪同參加.

(1)假設(shè)參加此次活動的家長人數(shù)是參加學(xué)生人數(shù)的2倍少2人,為了此次活動學(xué)校專門為每名學(xué)生和家長購買一件T恤衫, 家長的T恤衫每購買8件贈送1件學(xué)生T恤衫(不足8件不贈送),學(xué)生T恤衫每件15元,學(xué)校購買服裝的費用不超過3401元,請問每件家長T恤衫的價格最高是多少元?

(2)已知該景區(qū)的成人票價每張100元,學(xué)生票價每張50元,為了支持此次活動,該景區(qū)特地推出如下優(yōu)惠活動:每張成人票價格下調(diào)a%,學(xué)生票價格下調(diào).a% 另外,經(jīng)統(tǒng)計此次參加活動的家長人數(shù)比學(xué)生人數(shù)多a%, 參加此次活動的購買票價總費用比未優(yōu)惠前減少了a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個,超市在某天提供的早餐食品為菜包、面包、雞蛋、油條四樣食品.

(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是________事件(填“隨機”“必然”或“不可能”);

(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接·黨的生日,某校準備組織師生共310人參加一次大型公益活動,租用4輛大客車和6輛小客車恰好全部坐滿,已知每輛大客車的座位數(shù)比小客車多15.

(1)求每輛大客車和小客車的座位數(shù);

(2)經(jīng)學(xué)校統(tǒng)計,實際參加活動人數(shù)增加了40人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,為使所有參加活動的師生均有座位,最多租用小客車多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示.AB、C三點在格點上.

1)作出ABC關(guān)于y軸對稱的A1B1C1,并寫出點C1的坐標   ;

2)在(1)的條件下,連接CC1AB于點D,請標出點D,并直接寫出CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標語,其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標語CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC∠BAC=90°,直角∠EPF的頂點PBC的中點,兩邊PE、PF分別交AB、AC于點EF,給出以下五個結(jié)論:①AE=CF②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;.當(dāng)∠EPF△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與點A、B重合),上述結(jié)論中始終正確的序號有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形中,,的內(nèi)心,的延長線和三角形的外接圓相交于點,連結(jié).

(1)求證:;

(2)過點的平行線交的延長線分別于點、,已知,圓的直徑為,

①求證:為圓的切線;②求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點O,過點ODEBC,分別交AB、AC于點D、EAB10,AC6,求△ADE的周長.

查看答案和解析>>

同步練習(xí)冊答案