【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,以每袋標(biāo)準(zhǔn)質(zhì)量45克為標(biāo)準(zhǔn),檢測每袋的質(zhì)量是否符合該標(biāo)準(zhǔn),超過或不足的克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克)

5

3

0

1

2

5

袋數(shù)

1

3

6

4

5

1

回答下列問題:

1)這20袋樣品中,完全符合每袋標(biāo)準(zhǔn)質(zhì)量45克的有   袋;

2)這批樣品的總質(zhì)量是多少克?(要求寫出算式).

【答案】(1)6;(2)這批樣品的總質(zhì)量是905

【解析】

(1)根據(jù)題意:當(dāng)與標(biāo)準(zhǔn)質(zhì)量的差值為0的時候就是標(biāo)準(zhǔn)的質(zhì)量;

(2)根據(jù)題意總袋數(shù)的標(biāo)準(zhǔn)質(zhì)量之和,然后取加減每袋的誤差值即可得出最后結(jié)果.

解:

(1)完全符合每袋標(biāo)準(zhǔn)質(zhì)量45克的,就是與標(biāo)準(zhǔn)質(zhì)量的差值為0的,從表中可知為6

故答案為:6

(2)由題意得:

905

答:這批樣品的總質(zhì)量是905克.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示的數(shù)a、點B表示數(shù)b,a、b滿足|a40|+b+820.點O是數(shù)軸原點.

1)點A表示的數(shù)為 ,點B表示的數(shù)為 ,線段AB的長為

2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC2BC,則點C在數(shù)軸上表示的數(shù)為

3)現(xiàn)有動點P、Q都從B點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當(dāng)點P移動到O點時,點Q才從B點出發(fā),并以每秒3個單位長度的速度向右移動,且當(dāng)點P到達A點時,點Q就停止移動,設(shè)點P移動的時間為t秒,問:當(dāng)t為多少時,PQ兩點相距4個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,對角線 AC、BD交于點 M,點E在邊BC上,且∠DAE=DCB,聯(lián)結(jié)AE,AEBD交于點F.

(1)求證:

(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=k為常數(shù),且k≠0)的圖象交于A1,a),B兩點.

1)求反比例函數(shù)的表達式及點B的坐標(biāo);

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點,過點A的⊙FAB于點D,E是線段BC上一點,且ED=EB,則EF的最小值為 ( )

A. 3 B. 2 C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師隨機抽査了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成不完整的條形統(tǒng)計圖和不完整的扇形統(tǒng)計圖(如圖所示).

1)補全條形統(tǒng)計圖;

2)求出扇形統(tǒng)計圖中冊數(shù)為4的扇形的圓心角的度數(shù);

3)老師隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OB為∠AOC內(nèi)一條射線,∠AOB的余角是它自身的兩倍.

1)求∠AOB的度數(shù);

2)射線OEOA開始,在∠AOB內(nèi)以1°/s的速度繞著O點逆時針方向旋轉(zhuǎn),轉(zhuǎn)到OB停止,同時射線OF在∠BOC內(nèi)從OB開始以3°/s的速度繞O點逆時針方向旋轉(zhuǎn)轉(zhuǎn)到OC停止,設(shè)運動時間為t秒.

①若OEOF運動的任一時刻,均有∠COF3BOE,求∠AOC的度數(shù);

OP為∠AOC內(nèi)任一射線,在①的條件下,當(dāng)t10時,以OP為邊所有角的度數(shù)和的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時的情況,那么照這樣壘下去

一級 二級

①填出下表中未填的兩空,觀察規(guī)律。

階梯級數(shù)

一級

二級

三級

四級

石墩塊數(shù)

3

9

②到第n級階梯時,共用正方體石墩_______________塊(用n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案