在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A坐標(biāo)為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個動點(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點.
(1)如圖,當(dāng)C點在x軸上運動時,設(shè)AC=x,請用x表示線段AD的長;

(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,
①當(dāng)C點運動到何處時直線EF∥直線BO?此時⊙F和直線BO的位置關(guān)系如何?請說明理由.
②G為CD與⊙F的交點,H為直線DF上的一個動點,連結(jié)HG、HC,求HG+HC的最小值,并將此最小值用x表示.

(1)1+x;(2);(3)相切,理由見解析,.

解析試題分析:(1)由△OAB和△BCD都為等邊三角形,等邊三角形的邊長相等,且每一個內(nèi)角都為60°,得到∠OBA=∠DBC,等號兩邊都加上∠ABC,得到∠OBC=∠ABD,根據(jù)“SAS”得到△OBC≌△ABD,即可得到對應(yīng)邊AD與OC相等,由OC表示出AD即可;
(2)隨著C點的變化,直線AE的位置不變.理由為:由(1)得到的兩三角形全等,得到∠BAD=∠BOC=60°,又等邊三角形BCD,得到∠BAO=60°,根據(jù)平角定義及對頂角相等得到∠OAE=60°,在直角三角形OAE中,由OA的長,根據(jù)tan60°的定義求出OE的長,確定出點E的坐標(biāo),設(shè)出直線AE的方程,把點A和E的坐標(biāo)代入即可確定出解析式;
(3)①由EA與OB平行,且EF也與OB平行,根據(jù)過直線外一點作已知直線的平行線有且只有一條,得到EF與EA重合,所以F為BC與AE的交點,又F為BC的中點,得到A為OC中點,由A的坐標(biāo)即可求出C的坐標(biāo);相切,理由是由F為等邊三角形BC邊的中點,根據(jù)“三線合一”得到DF與BC垂直,由EF與OB平行得到BF與OB垂直,得證;
②根據(jù)等邊三角形的“三線合一”得到DF垂直平分BC,所以C與D關(guān)于DF對稱,所以GB為HC+HG的最小值,GB的求法是:由B,C及G三點在圓F圓周上,得到FB,F(xiàn)C及FG相等,利用一邊的中線等于這邊的一半得到三角形BCG為直角三角形,根據(jù)“三線合一”得到∠CBG為30°,利用cos30°和BC的長即可求出BG,而BC的長需要過B作BM垂直于x軸,根據(jù)等邊三角形的性質(zhì)求出BM及AM,表示出CM,在直角三角形BMC中,根據(jù)勾股定理表示出BC的長即可.
試題解析:(1)∵△OAB和△BCD都為等邊三角形,
∴OB=AB,BC=BD,
∠OBA=∠DBC=60°,即∠OBA+∠ABC=∠DBC+∠ABC,
∴∠OBC=∠ABD,
∴△OBC≌△ABD,
∴AD=OC=1+x;
(2)隨著C點的變化,直線AE的位置不變.理由如下:
由△OBC≌△ABD,得到∠BAD=∠BOC=60°,
又∵∠BAO=60°,∴∠DAC=60°,
∴∠OAE=60°,又OA=1,
在直角三角形AOE中,tan60°=,則OE=,點E坐標(biāo)為(0,-),A(1,0),
設(shè)直線AE解析式為y=kx+b,把E和A的坐標(biāo)代入得:
,解得:,
所以直線AE的解析式為;
(3)①根據(jù)題意畫出圖形,如圖所示:

∵∠BOA=∠DAC=60°,EA∥OB,又EF∥OB,則EF與EA所在的直線重合,∴點F為DE與BC的交點,
又F為BC中點,∴A為OC中點,又AO=1,則OC=2,
∴當(dāng)C的坐標(biāo)為(2,0)時,EF∥OB;
這時直線BO與⊙F相切,理由如下:
∵△BCD為等邊三角形,F(xiàn)為BC中點,
∴DF⊥BC,又EF∥OB,
∴FB⊥OB,即∠FBO=90°,
故直線BO與⊙F相切;
②根據(jù)題意畫出圖形,如圖所示:

由點B,點C及點G在圓F的圓周上得:FB=FC=FG,即FG=BC,
∴△CBG為直角三角形,又△BCD為等邊三角形,
∴BG為∠CBD的平分線,即∠CBG=30°,
過點B作x軸的垂直,交x軸于點M,由△OAB為等邊三角形,
∴M為OA中點,即MA=,BM=,MC=AC+AM=x+,
在直角三角形BCM中,根據(jù)勾股定理得:
BC=,
∵DF垂直平分BC,∴B和C關(guān)于DF對稱,∴HC=HB,
則HC+HG=BG,此時BG最小,
在直角三角形BCG中,BG=BCcos30°=
考點:1. 一次函數(shù)綜合題;2.等邊三角形的性質(zhì);3.直線與圓的位置關(guān)系;4.軸對稱-最短路線問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人距B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)寫出A、B兩地之間的距離;
(2)求出點M的坐標(biāo),并解釋該點坐標(biāo)所表示的實際意義;
(3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持聯(lián)系時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我市某工藝廠為配合奧運會,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價x(元/件)
……
30
40
50
60
……
每天銷售量y(件)
……
500
400
300
200
……
(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB分別與兩坐標(biāo)軸交于點A(4,0).B(0,8),點C的坐標(biāo)為(2,0).

(1)求直線AB的解析式;
(2)在線段AB上有一動點P.
①過點P分別作x,y軸的垂線,垂足分別為點E,F,若矩形OEPF的面積為6,求點P的坐標(biāo).
②連結(jié)CP,是否存在點P,使相似,若存在,求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在國道202公路改建工程中,某路段長4000米,由甲乙兩個工程隊擬在30天內(nèi)(含30天)合作完成.已知兩個工程隊各有10名工人(設(shè)甲乙兩個工程隊的工人全部參與生產(chǎn),甲工程隊每天的工作量相同,乙工程隊每人每天的工作量相同).甲工程隊1天、乙工程2天共修路200米;甲工程隊2天、乙工程隊3天共修路350米.
(1)試問甲乙兩個工程隊每天分別修路多少米?
(2)甲乙兩個工程隊施工10天后,由于工作需要需從甲隊抽調(diào)m人去學(xué)習(xí)新技術(shù),總部要求在規(guī)定時間內(nèi)完成,請問甲隊可以抽調(diào)多少人?
(3)已知甲工程隊每天的施工費用為0.6萬元,乙工程隊每天的施工費用為0.35萬元,要使該工程的施工費用最低,甲乙兩隊各做多少天?最低費用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為表彰在某活動中表現(xiàn)積極的同學(xué),老師決定購買文具盒與鋼筆作為獎品.已知5個文具盒、2支鋼筆共需100元;3個文具盒、1支鋼筆共需57元.
(1)每個文具盒、每支鋼筆各多少元?
(2)若本次表彰活動,老師決定購買10件作為獎品,若購買x個文具盒,10件獎品共需w元,求w與x的函數(shù)關(guān)系式。如果至少需要購買3個文具盒,本次活動老師最多需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線y=-x+4與反比例函數(shù)y=的圖象相交于點A(-2,a),并且與x軸相交于點B。

(1)求a的值;
(2)求反比例函數(shù)的表達式;
(3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=-x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將△ABM沿AM折疊,使點B恰好落在x軸上的點B'處.

求(1)點B'的坐標(biāo).(2)直線AM所對應(yīng)的函數(shù)關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知成正比例,且當(dāng)時,.
(1)求的函數(shù)關(guān)系式;
(2)求當(dāng)時的函數(shù)值.

查看答案和解析>>

同步練習(xí)冊答案