【題目】如圖,等腰RtOAB,∠AOB90°,斜邊ABy軸正半軸于點C,若A3,1),則點C的坐標為_____

【答案】0,

【解析】

BBEy軸于E,過AAFx軸于F,根據(jù)全等三角形的性質(zhì)得到B(﹣1,3),設(shè)直線AB的解析式為y=kx+b,求得直線AB的解析式為y=x+,于是得到結(jié)論.

BBEy軸于E,過AAFx軸于F,如圖所示:

∴∠BCO=AFO=90°,

A31),

OF=3,AF=1,

∵∠AOB=90°,

∴∠BOC+OBC=BOC+AOF=90°,

∴∠BOC=AOF,

OA=OB,

∴△BOE≌△AOFAAS),

BE=AF=1,OE=OF=3

B(﹣1,3),

設(shè)直線AB的解析式為y=kx+b

,

解得:,

∴直線AB的解析式為y=x+,

x=0時,y=

∴點C的坐標為(0,),

故答案為:(0,).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點DAC上,過點DDFBC于點F,且BDBCAD,則∠CDF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以每小時60千米/時的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達目的地后停止甲、乙兩車相距的路程(千米)與甲車的行駛時間()之間的函數(shù)關(guān)系如圖所示:

(1)乙年的速度為______千米/時,_____,______.

(2)求甲、乙兩車相遇后之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12)如圖,在矩形ABCD中,AB12cmBC8cm.點E、FG分別從點

A、B、C同時出發(fā),沿矩形的邊按逆時針方向移動,點E、G的速度均為2cm/s,點F的速

度為4cm/s,當點F追上點G(即點F與點G重合)時,三個點隨之停止移動.設(shè)移動開始后

ts時,EFG的面積為Scm2

(1)t1s時,S的值是多少?

(2)寫出St之間的函數(shù)解析式,并指出自變量t的取值范圍;

(3)若點F在矩形的邊BC上移動,當t為何值時,以點B、E、F為頂點的三角形與以CF、G為頂點的三角形相似?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)2x27x+3=0 (2)(x2)2=2x4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC 中,D BC 邊的中點,E、F 分別在 AD 及其延長線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在銳角ABC中,AB=5,tanC=3,BDAC于點D,BD=3,點P從點A出發(fā),以每秒1個單位長度的速度沿AB向終點B運動,過點PPEAC交邊BC于點E,以PE為邊作RtPEF,使∠EPF=90°,點F在點P的下方,且EFAB.設(shè)PEFABD重疊部分圖形的面積為S(平方單位)(S0),點P的運動時間為t(秒)(t0).

1)求線段AC的長.

2)當PEFABD重疊部分圖形為四邊形時,求St之間的函數(shù)關(guān)系式.

3若邊EF與邊AC交于點Q,連結(jié)PQ,如圖②

①當PQPEF的面積分成12兩部分時,求AP的長.

②直接寫出PQ的垂直平分線經(jīng)過ABC的頂點時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD

【發(fā)現(xiàn)】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請判斷CBD的形狀,并證明你的結(jié)論;

【應(yīng)用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OEOF上,且PGH為等邊三角形,則滿足上述條件的PGH的個數(shù)一共有   .(只填序號)

2344個以上

查看答案和解析>>

同步練習冊答案