如圖,在平面直角坐標(biāo)系中,直線數(shù)學(xué)公式分別與x軸、y軸交于點A和點B,二次函數(shù)y=ax2-4ax+c的圖象經(jīng)過點B和點C(-1,0),頂點為P.
(1)求這個二次函數(shù)的解析式,并求出P點坐標(biāo);
(2)若點D在二次函數(shù)圖象的對稱軸上,且AD∥BP,求PD的長;
(3)在(2)的條件下,如果以PD為直徑的圓與圓O相切,求圓O的半徑.

解:(1)因為直線分別與x軸、y軸交于點A和點B;
由x=0,得y=3,y=0,得x=4,
所以A(4,0),B(0,3);
把C(-1,0),B(0,3)代入y=ax2-4ax+c中,
,
解得;
∴這個二次函數(shù)的解析式為
,P點坐標(biāo)為P;

(2)設(shè)二次函數(shù)圖象的對稱軸與直線交于E點,與x軸交于F點;
把x=2代入
得,
,

∵PE∥OB,OF=AF,
∴BE=AE,
∵AD∥BP,
∴PE=DE,;

(3)∵
,
∴ED>OE;
設(shè)圓O的半徑為r,以PD為直徑的圓與圓O相切時,只有內(nèi)切,
∴|-r|=,
解得:,
即圓O的半徑為
分析:(1)根據(jù)已知直線的解析式,可求得A、B的坐標(biāo),然后將B、C的坐標(biāo)代入拋物線的解析式中,即可求得待定系數(shù)的值,從而確定該拋物線的解析式;利用配方法將所得拋物線解析式化為頂點坐標(biāo)式,進(jìn)而可求得頂點P的坐標(biāo);
(2)由(1)的P點坐標(biāo)知:拋物線的對稱軸為x=2,因此拋物線對稱軸經(jīng)過AB的中點,設(shè)此交點為E,若BP∥AD,那么PE=DE,根據(jù)拋物線的對稱軸方程易求得E點坐標(biāo),從而可得到PE的長,根據(jù)PD=2PE即可得解;
(3)由(2)知E是PD的中點,OE的長易求得,比較ED、OE的大小后發(fā)現(xiàn),DE>OE,若⊙E、⊙O相切,那么只有內(nèi)切一種情況,故兩圓的半徑差等于圓心距,由此求得⊙O的半徑.
點評:此題考查了二次函數(shù)解析式的確定、函數(shù)圖象交點坐標(biāo)的求法、圓與圓的位置關(guān)系等知識,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案