如圖,△ABC和△DEF不相似,但∠A=∠D.能否將這兩個三角形分別分割成兩個三角形,使△ABC所分成的每個三角形與△DEF分成的每個三角形對應(yīng)相似?如果能,請設(shè)計出一種分割方案.

【答案】分析:作∠BCH=∠E,∠EFG=∠B,根據(jù)兩組角對應(yīng)相等兩三角形相似可以得到分成的一對三角形相似,又∠AHC=∠B+∠BCH,∠DGF=∠E+∠EFG,所以∠AHC=∠DGF,又∠A=∠D,所以△ACH∽△DFG.
解答:解:能.(2分)
由題意,∠B+∠ACB=∠E+∠DFE,∠B≠∠E、∠B≠∠DFE,(4分)
設(shè)∠B<∠DFE,
作∠EFG=∠B,G在DE上,(5分)
作∠BCH=∠E,H在AB上(如圖),(6分)
可得,△HBC∽△GFE;
∵∠AHC=∠B+∠BCH,∠DGF=∠E+∠EFG,
∴∠AHC=∠DGF,
又∠A=∠D,
∴△AHC∽△DGF.(8分)
點評:本題關(guān)鍵在于先分割出兩組角對應(yīng)相等,得到一對相似三角形,再根據(jù)三角形的外角性質(zhì)得到一對相等的角,從而證明另一對三角形也相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F(xiàn)為線段AD的中點,連CF,
(1)如圖1,當(dāng)D點在BC上時,BE與CF的數(shù)量關(guān)系是
 
,位置關(guān)系是
 
,請證明.
精英家教網(wǎng)
(2)如圖2,把△DEC繞C點順時針旋轉(zhuǎn)一個銳角,其他條件不變,問(1)中的關(guān)系是否仍然成立?如果成立請證明.如果不成立,請寫出相應(yīng)的正確的結(jié)論并加以證明.
(3)如圖3,把△DEC繞C點順時針旋轉(zhuǎn)45°,若∠DCF=30°,直接寫出
BGCG
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,△ABC和△ADE都是等腰直角三角形,∠ACB和∠AED都是直角,點C在AD上,如果△ABC經(jīng)旋轉(zhuǎn)后能與△ADE重合,那么點
A
是旋轉(zhuǎn)中心,旋轉(zhuǎn)的最小度數(shù)為
45
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△CDE均為等腰直角三角形,點B,C,D在一條直線上,點M是AE的中點,BC=3,CD=1.
(1)求證:tan∠AEC=
BCCD
;
(2)請?zhí)骄緽M與DM的數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交 CE于點G,連接BE.下列結(jié)論中:
①CE=BD;  ②△ADC是等腰直角三角形;③∠ADB=∠AEB;    ④CD=EF.
一定正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求證:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度數(shù);
(3)在(2)的條件下,直接寫出DE的長為
2
10
2
10
.(只填結(jié)果,不用寫出計算過程)

查看答案和解析>>

同步練習(xí)冊答案