【題目】某水果商行計劃購進A、B兩種水果共200箱,這兩種水果的進價、售價如下表所示:

價格
類型

進價(元/箱)

售價(元/箱)

A

60

70

B

40

55


(1)若該商行進貸款為1萬元,則兩種水果各購進多少箱?
(2)若商行規(guī)定A種水果進貨箱數(shù)不低于B種水果進貨箱數(shù)的 ,應怎樣進貨才能使這批水果售完后商行獲利最多?此時利潤為多少?

【答案】
(1)解:設A種水果進貨x箱,則B種水果進貨(200﹣x)箱,

60x+40(200﹣x)=10000,

解得,x=100,

200﹣x=100,

即A種水果進貨100箱,B種水果進貨100箱


(2)解:設A種水果進貨x箱,則B種水果進貨(200﹣x)箱,售完這批水果的利潤為w,

則w=(70﹣60)x+(55﹣40)(200﹣x)=﹣5x+3000,

∵﹣5<0,

∴w隨著x的增大而減小,

∵x≥ ,

解得,x≥50,

當x=50時,w取得最大值,此時w=2750,

即進貨A種水果50箱,B種水果150箱時,獲取利潤最大,此時利潤為2750元


【解析】(1)根據(jù)題意可以得到相應的方程,從而可以得到兩種水果各購進多少箱;(2)根據(jù)題意可以得到利潤與甲種水果的關系式和水果A與B的不等式,從而可以解答本題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,線段AD的垂直平分線交AC于點N,△CND的周長是10,則AC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(a2b) 2(a2b) 2A,則A_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)

(1)畫出△ABC關于y軸對稱的△A1B1C1 , 并寫出點B的對應點B1的坐標;
(2)畫出△ABC繞點A按逆時針旋轉(zhuǎn)90°后的△AB2C2 , 并寫出點C的對應點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角形ABC的直角邊AB=6,BC=8,將直角三角形ABC沿邊BC的方向平移到三角形DEF的位置,DEAC于點G,BE=2,三角形CEG的面積為13.5,下列結(jié)論:

①三角形ABC平移的距離是4; ②EG=4.5;

③AD∥CF; ④四邊形ADFC的面積為6

其中正確的結(jié)論是( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,, 是它的角平分線 上的一點, , 分別平分, ,垂足為點

求證:( .(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下面的說理過程補充完整:

已知:如圖,∠1+2=180°,3=B,試判斷∠AED與∠C的關系,并說明理由.

解:∠AED=C.

理由:∵∠1+ADG=180°(平角定義),∠1+2=180°(已知).

∴∠2=ADG.(_____________)

EFAB(______________).

∴∠3=AED(_____________).

∵∠3=B(已知),

∴∠B=________(________________)

DEBC(__________________).

∴∠AED=C(_________________).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=﹣x2﹣2x+3與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.

(1)請直接寫出點A,C,D的坐標;
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標;
(3)如圖(2),F(xiàn)為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD,

求:(1)在圖(1)中∠B+D=?(2)在圖(2)中∠B+E1+D=?(3)在圖(3)中∠B+E1+E2+…+En1+En+D=?

查看答案和解析>>

同步練習冊答案