【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°.以AB長為一邊作△ABD,且AD=BD,∠ADB=90°,取AB中點(diǎn)E,連DE、CE、CD.則∠EDC是多少度.

【答案】75°

【解析】

根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半得到EC=EA=EB=AB,根據(jù)三角形的外角的性質(zhì)求出∠CEB=60°,根據(jù)直角三角形的性質(zhì)得到ED=EC,根據(jù)三角形內(nèi)角和定理計(jì)算即可.

∵∠ACB=90°,點(diǎn)EAB中點(diǎn),

∴EC=EA=EB=AB

∴∠ECA=∠CAB=30°,

∴∠CEB=60°

∵AD=BD,點(diǎn)EAB中點(diǎn),

∴DE⊥AB,即∠AED=90°

∴∠DEC=180°90°60°=30°,

∵∠ADB=90°,點(diǎn)EAB中點(diǎn),

∴DE=AB

∴ED=EC

∴∠EDC=75°,

故答案為:75°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)AB分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.

1)求AB的長度;

2)以AB為一邊作等邊△ABE,作OA的垂直平分線MNAB的垂線AD于點(diǎn),求證:BD=OE;

3)在(2)的條件下,連接DEABF,求證:FDE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,,,,,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)N同時(shí)從點(diǎn)C出發(fā)沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng).

設(shè)運(yùn)動(dòng)的時(shí)間為t

BC的長.

當(dāng)時(shí),求t的值.

設(shè)的面積為,試確定t的函數(shù)關(guān)系式.

在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使65?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC的面積為4cm2AP垂直∠B的平分線BP于點(diǎn)P.則三角形PBC的面積是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,動(dòng)點(diǎn)E,F分別從DC兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DCCB上移動(dòng).

1)如圖1,當(dāng)點(diǎn)E在邊DC上自DC移動(dòng),同時(shí)點(diǎn)F在邊CB上自CB移動(dòng)時(shí),連接AEDF交于點(diǎn)P,請你寫出AEDF的數(shù)量關(guān)系和位置關(guān)系,并說明理;

2)如圖2,當(dāng)E,F分別在邊CDBC的延長線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答,不需證明);連接AC,求ACE為等腰三角形時(shí)CECD的值;

3)如圖3,當(dāng)E,F分別在直線DC,CB上移動(dòng)時(shí),連接AEDF交于點(diǎn)P,由于點(diǎn)E,F的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.AD=2,試求出線段CP的最大值.

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=12cm,BC=24cm,如果將該矩形沿對角線BD折疊,那么圖中陰影部分的面積( cm2

A72 B90 C108 D144

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOOM,OA=8,點(diǎn)B為射線OM上的一個(gè)動(dòng)點(diǎn),分別以OB,AB為直角邊,B為直角頂點(diǎn),在OM兩側(cè)作等腰RtOBF、等腰RtABE,連接EFOMP點(diǎn),當(dāng)點(diǎn)B在射線OM上移動(dòng)時(shí),PB的長度為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,

1)求證:ABQ CAP;

2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店以每千克4元的價(jià)格購進(jìn)一批水果,由于銷售狀況良好,該店又購進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進(jìn)水果重量的2倍,這樣該水果店兩次購進(jìn)水果共花去了2200元.

1)該水果店兩次分別購買了多少元的水果?

2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購進(jìn)的水果有3%的損耗,第二次購進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?

查看答案和解析>>

同步練習(xí)冊答案