【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE=BF.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)利用ASA判定Rt△DFB≌Rt△DAC,從而得出BF=AC.
(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,再由BF=AC,利用等量代換即可得結論.
(1)∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形,
∴BD=CD,
∵CD⊥AB,BE⊥AC,
∴∠BDC=∠CDA=90°,∠BEC=∠BEA=90°,
∴∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,
又∵∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
,
∴Rt△DFB≌Rt△DAC(ASA),
∴BF=AC;
(2)∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
,
∴Rt△BEA≌Rt△BEC(ASA),
∴CE=AE,
∵CE+AE=AC,
∴CE=AC,
又由(1)知BF=AC,
∴CE=BF.
科目:初中數(shù)學 來源: 題型:
【題目】某自行車廠計劃一周生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因,實際每天的生產(chǎn)量與計劃量相比有出入。
下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn)了_________輛;
(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)__________輛;
(3)該廠實行計件工資制,每輛車60元,超額完成任務每輛獎15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過點D的切線交BC的延長線于點E,AC∥DE交BD于點H,DO及其延長線分別交AC,BC于點G,F(xiàn).
(1)求證:DF垂直平分AC;
(2)若弦AD=10,AC=16,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學實踐課上,老師在黑板上畫出如下的圖形(其中點B、F、C、E在同一條直線上),并寫出四個條件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老師讓同學們從這四個條件中選出三個作為題設,另一個作為結論,組成一個真命題.
(1)寫出所有的真命題.(用序號表示題設、結論)
(2)請選擇一個給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點A,B,點A、B的橫坐標分別為1,﹣2,一次函數(shù)圖象與y軸的交于點C,與x軸交于點D.
(1)求一次函數(shù)的解析式;
(2)對于反比例函數(shù)y=,當y<﹣1時,寫出x的取值范圍;
(3)在第三象限的反比例圖象上是否存在一個點P,使得S△ODP=2S△OCA?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是長方形, ∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=4,AD=BC=6,點A的坐標為(3,2).動點P的運動速度為每秒a個單位長度,動點Q的運動速度為每秒b個單位長度,且.設運動時間為t,動點P、Q相遇則停止運動.
(1) 求a,b的值;
(2) 動點P,Q同時從點A出發(fā),點P沿長方形ABCD的邊界逆時針方向運動,點Q沿長方形ABCD的邊界順時針方向運動,當t為何值時P、Q兩點相遇?求出相遇時P、Q所在位置的坐標;
(3) 動點P從點A出發(fā),同時動點Q從點D出發(fā):
①若點P、Q均沿長方形ABCD的邊界順時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標;
②若點P、Q均沿長方形ABCD的邊界逆時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是C的中點,AC的垂直平分線分別交AC,AD,AB于點E,O,F.
(1)求證:點O在AB的垂直平分線上;
(2)若∠CAD=20°,求∠BOF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com