【題目】如圖,拋物線S1與x軸交于點A(﹣3,0),B(1,0),將它向右平移2個單位得新拋物線S2,點M,N是拋物線S2上兩點,且MN∥x軸,交拋物線S1于點C,已知MN=3MC,則點C的橫坐標(biāo)為( )
A.B.C.D.1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在△ABC中,點D,E,F(xiàn)分別是邊AB,BC,CA上的動點,若△DEF∽△ABC(點D、E、F的對應(yīng)點分別為點A、B、C),則稱△DEF是△ABC的子三角形,如圖.
(1)已知:如圖1,△ABC是等邊三角形,點D,E,F(xiàn)分別是邊AB,BC,CA上動點,且AD=BE=CF.
求證:△DEF是△ABC的子三角形.
(2)已知:如圖2,△DEF是△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CF和AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;
(3)直接寫出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是⊙O直徑BD延長線上的一點,AC是⊙O的切線,C為切點.AD=CD,
(1)求證:AC=BC;
(2)若⊙O的半徑為1,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c(b,c為常數(shù)).
(Ⅰ)當(dāng)b=2,c=﹣3時,求二次函數(shù)的最小值;
(Ⅱ)當(dāng)c=5時,若在函數(shù)值y=1的情況下,只有一個自變量x的值與其對應(yīng),求此時二次函數(shù)的解析式;
(Ⅲ)當(dāng)c=5時,在自變量x的值滿足1≤x≤3的情況下,與其對應(yīng)的函數(shù)值y的最小值為﹣5,求b的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(2,0),點B(1,3).
(1)畫出將△OAB繞原點順時針旋轉(zhuǎn)90°后所得的△OA1B1,并寫出點A1,B1的坐標(biāo);
(2)畫出△OAB關(guān)于原點O的中心對稱圖形△OA2B2,并寫出點A2,B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于二次函數(shù)的說法錯誤的是( )
A.二次函數(shù)y=(x+2)2-2的頂點坐標(biāo)是(-2,-2)
B.拋物線y=-x2 +2x+1,當(dāng)x<0時y隨x的增大而增大
C.函數(shù)y= 2x2 + 4x-3的圖象的最低點坐標(biāo)為(-1,-5)
D.點A(3,0)不在拋物線y=x2-2x-3的圖象上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+3.
(1)求它的對稱軸和頂點坐標(biāo);
(2)求該拋物線與x軸的交點坐標(biāo);
(3)建立平面直角坐標(biāo)系,畫出這條拋物線的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com