【題目】如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x、y軸上,連接AC,將紙片OABC沿AC折疊,使點B落在點D的位置.若點B的坐標(biāo)為(2,4),則點D的橫坐標(biāo)是___________.
【答案】
【解析】
首先過點D作DF⊥OA于F,過D作DG⊥y軸于G.由四邊形OABC是矩形與折疊的性質(zhì),易證得△AEC是等腰三角形,然后在Rt△AEO中,利用勾股定理求得AE,OE的長,從而得到DE、EC的長.在Rt△EDC中,利用三角形面積公式求得DG的長,即可得點D的橫坐標(biāo).
過點D作DF⊥OA于F,過D作DG⊥y軸于G.
∵四邊形OABC是矩形,∴OC∥AB,∴∠ECA=∠CAB,根據(jù)題意得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA.
∵B(2,4),∴AD=AB=4,DC=CB=2.設(shè)OE=x,則AE=EC=OC﹣OE=4﹣x.在Rt△AOE中,AE2=OE2+OA2,即(4﹣x)2=x2+4,解得:x,∴OE,EC=AE,∴DE=DA-AE=4-=.在Rt△EDC中,∵DEDC=DGEC,∴DG===,∴點D的橫坐標(biāo)為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC
(1)求證:△ABD≌△ECB;
(2)若∠EDC=65°,求∠ECB的度數(shù);
(3)若AD=3,AB=4,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CF,DE∥CF,DE與BC交于點P,若∠ABC=70°,∠CDE=130°.
(1)試判斷∠ABP與∠BPD之間的數(shù)量關(guān)系,并說明理由;
(2)求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算或解方程
(1)﹣14+(﹣5)2×(﹣)+|0.8﹣1|
(2)﹣1.53×0.75+1.53×+×1.53
(3)
(4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿EF折疊,點C落在A處,點D落在D′處.若AB=3,BC=9,則折痕EF的長為( )
A.
B.4
C.5
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,ME和NF分別垂直平分AB和AC.
(1)若BC =10cm,試求△AMN的周長.
(2)在△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度數(shù).
(3) 在 (2) 中,若無AB = AC的條件,你還能求出∠MAN的度數(shù)嗎?若能,請求出;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com