(1)在圖1,2,3中,已知平行四邊形ABCD的三個(gè)頂點(diǎn)A,B,D的坐標(biāo)(如圖所示),求出圖1,2,3中的第四個(gè)頂點(diǎn)C的坐標(biāo),已求出圖1中頂點(diǎn)C的坐標(biāo)是(5,2),圖2,3中頂點(diǎn)C的坐標(biāo)分別是______,______;

(2)在圖4中,平行四邊形ABCD的頂點(diǎn)A,B,D的坐標(biāo)(如圖所示),求出頂點(diǎn)C的坐標(biāo)(C點(diǎn)坐標(biāo)用含a,b,c,d,e,f的代數(shù)式表示);

歸納與發(fā)現(xiàn):
(3)通過對(duì)圖1,2,3,4的觀察和頂點(diǎn)C的坐標(biāo)的探究,你會(huì)發(fā)現(xiàn):無(wú)論平行四邊形ABCD處于直角坐標(biāo)系中哪個(gè)位置,當(dāng)其頂點(diǎn)坐標(biāo)為A(a,b),B(c,d),C(m,n),D(e,f)(如圖4)時(shí),則四個(gè)頂點(diǎn)的橫坐標(biāo)a,c,m,e之間的等量關(guān)系為______;縱坐標(biāo)b,d,n,f之間的等量關(guān)系為______
(不必證明);運(yùn)用與推廣:
(4)在同一直角坐標(biāo)系中有拋物線y=x2-(5c-3)x-c和三個(gè)點(diǎn)數(shù)學(xué)公式,數(shù)學(xué)公式,H(2c,0)(其中c>0).問當(dāng)c為何值時(shí),該拋物線上存在點(diǎn)P,使得以G,S,H,P為頂點(diǎn)的四邊形是平行四邊形?并求出所有符合條件的P點(diǎn)坐標(biāo).

解:(1)(e+c,d),(c+e-a,d).

(2)分別過點(diǎn)A,B,C,D作x軸的垂線,垂足分別為A1,B1,C1,D1
分別過A,D作AE⊥BB1于E,DF⊥CC1于點(diǎn)F.
在平行四邊形ABCD中,CD=BA,
又∵BB1∥CC1,
∴∠EBA+∠ABC+∠BCF=∠ABC+∠BCF+∠FCD=180度.
∴∠EBA=∠FCD.
又∵∠BEA=∠CFD=90°,
∴△BEA≌△CFD.
∴AE=DF=a-c,BE=CF=d-b.
設(shè)C(x,y).
由e-x=a-c,得x=e+c-a.
由y-f=d-b,得y=f+d-b.
∴C(e+c-a,f+d-b).
(此問解法多種,可參照評(píng)分)

(3)m=c+e-a,n=d+f-b.或m+a=c+e,n+b=d+f.

(4)若GS為平行四邊形的對(duì)角線,由(3)可得P1(-2c,7c).
要使P1在拋物線上,
則有7c=4c2-(5c-3)×(-2c)-c,
即c2-c=0.
∴c1=0(舍去),c2=1.此時(shí)P1(-2,7).
若SH為平行四邊形的對(duì)角線,由(3)可得P2(3c,2c),
同理可得c=1,此時(shí)P2(3,2).
若GH為平行四邊形的對(duì)角線,由(3)可得(c,-2c),
同理可得c=1,此時(shí)P3(1,-2).
綜上所述,當(dāng)c=1時(shí),拋物線上存在點(diǎn)P,使得以G,S,H,P為頂點(diǎn)的四邊形是平行四邊形.
符合條件的點(diǎn)有P1(-2,7),P2(3,2),P3(1,-2).
分析:(1)根據(jù)平行四邊形的性質(zhì):對(duì)邊平行且相等,得出圖2,3中頂點(diǎn)C的坐標(biāo)分別是(e+c,d),(c+e-a,d);
(2)分別過點(diǎn)A,B,C,D作x軸的垂線,垂足分別為A1,B1,C1,D1,分別過A,D作AE⊥BB1于E,DF⊥CC1于點(diǎn)F.
在平行四邊形ABCD中,CD=BA,根據(jù)內(nèi)角和定理,又∵BB1∥CC1,可推出∠EBA=∠FCD,△BEA≌△CFD.
依題意得出AF=DF=a-c,BE=CF=d-b.設(shè)C(x,y).由e-x=a-c,得x=e+c-a.
由y-f=d-b,得y=f+d-b.繼而推出點(diǎn)C的坐標(biāo).
(3)在平行四邊形ABCD中,CD=BA,同理證明△BEA≌△CFD(同(2)證明).然后推出AF=DF=a-c,BE=CF=d-b.又已知C點(diǎn)的坐標(biāo)為(m,n),e-m=a-c,故m=e+c-a.由n-f=d-b,得出n=f+d-b.
(4)若GS為平行四邊形的對(duì)角線,由(3)可得P1(-2c,7c).要使P1在拋物線上,
則有7c=4c2-(5c-3)×(-2c)-c,求出c的實(shí)際取值以及P1的坐標(biāo),
若SH為平行四邊形的對(duì)角線,由(3)可得P2(3c,2c),
同理可得c=1,此時(shí)P2(3,2);
若GH為平行四邊形的對(duì)角線,由(3)可得(c,-2c),
同理可得c=1,此時(shí)P3(1,-2);故綜上所述可得解.
點(diǎn)評(píng):考查平行四邊形的性質(zhì),平面直角坐標(biāo)系內(nèi)的坐標(biāo),平行線的性質(zhì)等知識(shí).理解平行四邊形的特點(diǎn)結(jié)合平面直角坐標(biāo)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在圖中填上適當(dāng)?shù)臄?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在平面直角坐標(biāo)系中
(1)在圖中描出A(-2,-2),B(-8,6),C(2,1),連接AB、BC、AC,并畫出將它向左平移1個(gè)單位再向下平移2個(gè)單位的圖象.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫格點(diǎn),請(qǐng)?jiān)诮o定的網(wǎng)格中按要求畫圖:
(1)從點(diǎn)A出發(fā)在圖中畫一條線段AB,使得AB=
10
;
(2)畫出一個(gè)以(1)中的AB為邊的等腰三角形,使另兩個(gè)頂點(diǎn)在格點(diǎn)上,且另兩邊的長(zhǎng)度都是無(wú)理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

附加題
①觀察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…,則32008的末尾數(shù)字是
 

②規(guī)定一種新運(yùn)算“*”,對(duì)于任意實(shí)數(shù)a和b,有a*b=a÷b+1,則(6x3y-3xy2)*3xy=
 
;
③如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形都為1,請(qǐng)?jiān)诮o定網(wǎng)格中按下列要求畫出圖形:
精英家教網(wǎng)(1)從點(diǎn)A出發(fā)畫一條線段AB,使它的另一端點(diǎn)B在格點(diǎn)(即小正方形的頂點(diǎn))上,且長(zhǎng)度為
5
;
(2)在圖中正方形網(wǎng)格上畫出格點(diǎn)四邊形,使四邊形的邊長(zhǎng)分別為
5
13
,
2
10
,并求出這個(gè)四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖①,在?ABCD中,O為對(duì)角線BD的中點(diǎn).過O的直線MN交直線AB于點(diǎn)M,交直線CD于點(diǎn)N;過O的另一條直線PQ交直線AD于點(diǎn)P,交直線BC于點(diǎn)Q,連接PN、MQ.
精英家教網(wǎng)精英家教網(wǎng)
(1)試證明△PON與△QOM全等;
(2)若點(diǎn)O為直線BD上任意一點(diǎn),其他條件不變,則△PON與△QOM又有怎樣的關(guān)系?試就點(diǎn)O在圖②所示的位置,畫出圖形,證明你的猜想;
(3)若點(diǎn)O為直線BD上任意一點(diǎn)(不與點(diǎn)B、D重合),設(shè)OD:OB=k,PN=x,MQ=y,則y與x之間的函數(shù)關(guān)系式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案