【題目】1)在直角坐標(biāo)系中畫出二次函數(shù)yx2x的圖象.

2)若將yx2x圖象沿x軸向左平移2個(gè)單位,請(qǐng)寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.

3)根據(jù)圖象,寫出當(dāng)y0時(shí),x的取值范圍.

【答案】1)見解析;(2yx2+x ;(3x<﹣1x3

【解析】

1)先將拋物線化為頂點(diǎn)式后,根據(jù)拋物線的頂點(diǎn)坐標(biāo)、對(duì)稱軸,與坐標(biāo)軸的交點(diǎn)坐標(biāo)即可畫出圖象.
2)先將拋物線化為頂點(diǎn)式后,由于沿x軸向左平移2個(gè)單位,從而列出函數(shù)式.
3)根據(jù)圖像即可求出y0時(shí),x的取值范圍.

解:(1)∵yx2x=x-12-2,

∴拋物線的頂點(diǎn)坐標(biāo)(1-2),對(duì)稱軸x=1

y0時(shí),x2x=0,解得:x=3x=-1,

即拋物線與x軸的交點(diǎn)坐標(biāo)為(-1,0)和(3,0),

當(dāng)x=0時(shí),y= -,
即拋物線與y軸交點(diǎn)坐標(biāo)為(0,-),

∴二次函數(shù)yx2x的圖象如圖:

2)∵yx2x=x-12-2
∴將yx2x圖象沿x軸向左平移2個(gè)單位,
y=x-1+22-2=x2+x

∴平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式為:yx2+x;

3)根據(jù)圖象得,當(dāng)y0時(shí),x-1x3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 (1),已知△ABC是等邊三角形,以BC為直徑的⊙OAB、ACD、E.求證:

(1)△DOE是等邊三角形.

(2)如圖(2),若∠A=60°,AB≠AC, (1)中結(jié)論是否成立?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB中,∠OAB90°,∠OBA30°,頂點(diǎn)A在反比例函數(shù)y圖象上,若RtAOB的面積恰好被y軸平分,則進(jìn)過點(diǎn)B的反比例函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC90°,∠ACB60°,BC4cm,DBC的中點(diǎn),若動(dòng)點(diǎn)E1cm/s的速度從點(diǎn)A出發(fā),沿著A→C→A的方向運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為秒(0≤t≤12),連接DE,當(dāng)△CDE是直角三角形時(shí),t的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yn=﹣(xan)2+bn,(n為正整數(shù),且0≤a1a2…≤an)x軸的交點(diǎn)為

A(0,0)An(n,0),nCn1+2,當(dāng)n1時(shí),第1條拋物線y1=﹣(xa1)2+b1x軸的交點(diǎn)為A(0,0)A1(2,0),其他依此類推.

(1)a1,b1的值及拋物線y2的解析式.

(2)拋物線的頂點(diǎn)B坐標(biāo)為(_____,______);依此類推,第n+1條拋物線yn+1的頂點(diǎn)Bn+1坐標(biāo)為(____,_____)所有拋物線的頂點(diǎn)坐標(biāo)滿足的函數(shù)關(guān)系式是______.

(3)探究下結(jié)論:

①是否存在拋物線yn,使得△AAnBn為等腰直角三角形?若存在請(qǐng)求出拋物線的表達(dá)式;若不存在,請(qǐng)說明理由.

②若直線xm(m0)與拋物線yn分別交于C1,C2,Cn則線段C1C2,C2C3,Cn1Cn的長(zhǎng)有何規(guī)律?請(qǐng)用含有m的代數(shù)式表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線與雙曲線相交于A(23),B兩點(diǎn),P是第一象限內(nèi)的雙曲線上在意一點(diǎn),直線PAx軸于點(diǎn)M,連接PBx軸于點(diǎn)N,若∠APN = 90°,則PM的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC為等邊三角形,其中點(diǎn)A、B、C的坐標(biāo)分別為(﹣3,﹣1)、(﹣3,﹣3)、(﹣3+,﹣2).現(xiàn)以y軸為對(duì)稱軸作△ABC的對(duì)稱圖形,得△A1B1C1,再以x軸為對(duì)稱軸作△A1B1C1的對(duì)稱圖形,得△A2B2C2

直接寫出點(diǎn)C1的坐標(biāo)  ,點(diǎn)C2的坐標(biāo)  ;

能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?你若認(rèn)為能,請(qǐng)作出肯定的回答,并直接寫出所旋轉(zhuǎn)的度數(shù);你若認(rèn)為不能,請(qǐng)作出否定的回答(不必說明理由);

設(shè)當(dāng)△ABC的位置發(fā)生變化時(shí),△A2B2C2、△A1B1C1、△ABC之間的對(duì)稱關(guān)系始終保持不變,當(dāng)△ABC向上平移多少個(gè)單位時(shí),△A1B1C1與△A2B2C2完全重合?并直接寫出此時(shí)點(diǎn)C的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)銷售一種商品,進(jìn)價(jià)為每個(gè)20元,規(guī)定每個(gè)商品售價(jià)不低于進(jìn)價(jià),且不高于60元,經(jīng)調(diào)查發(fā)現(xiàn)每天的銷售量(個(gè)與每個(gè)商品的售價(jià)(滿足一次函數(shù)關(guān)系,其部分?jǐn)?shù)據(jù)如下所示:

每個(gè)商品的售價(jià)(

30

40

50

每天銷售量(個(gè)

100

80

60

(1)之間的函數(shù)表達(dá)式;

(2)不考慮其他因素,當(dāng)商品的售價(jià)為多少元時(shí),商場(chǎng)每天獲得的總利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長(zhǎng)為(

A.B.C.πD.

查看答案和解析>>

同步練習(xí)冊(cè)答案