如圖,正方形ABCD中,O為BD中點(diǎn),以BC為邊向正方形內(nèi)作等邊△BCE,連接并延長(zhǎng)AE交CD于F,連接BD分別交CE、AF于G、H,下列結(jié)論:
①∠CEH=45º;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正確的結(jié)論是( )
A.①②③ B.①④⑤ C.①②⑤ D.②④⑤
C
【解析】解:①由∠ABC=90°,△BEC為等邊三角形,△ABE為等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此結(jié)論正確;
②由△EGD≌△DEF,EF=GD,再由△HDE為等腰三角形,∠DEH=30°,得出△HGF為等腰三角形,∠HFG=30°,可求得GF∥DE,此結(jié)論正確;
③由圖可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此結(jié)論不正確;
④如圖,過(guò)點(diǎn)G作GM⊥CD垂足為M,GN⊥BC垂足為N,設(shè)GM=x,則GN= x,進(jìn)一步利用勾股定理求得GD= x,BG= x,得出BG= GD,此結(jié)論不正確;
⑤由圖可知△BCE和△BCG同底不等高,它們的面積比即是兩個(gè)三角形的高之比,由④可知△BCE的高為( x+x)和△BCG的高為x,因此S△BCE:S△BCG= ( x+x): x= ,此結(jié)論正確;故正確的結(jié)論有①②⑤.故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、1 | B、2 | C、3 | D、4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com