【題目】某校創(chuàng)建“環(huán)保示范學(xué)!保瑸榱私馊W(xué)生參加環(huán)保類社團(tuán)的意愿,在全校隨機(jī)抽取了50名學(xué)生進(jìn)行問卷調(diào)查.問卷給出了五個社團(tuán)供學(xué)生選擇(學(xué)生可根據(jù)自己的愛好選擇一個社團(tuán),也可以不選),對選擇了社團(tuán)的學(xué)生的問卷情況進(jìn)行了統(tǒng)計,如下表:
社團(tuán)名稱 | A 酵素制作社團(tuán) | B 回收材料小制作社團(tuán) | C 垃圾分類社團(tuán) | D 環(huán)保義工社團(tuán) | E 綠植養(yǎng)護(hù)社團(tuán) |
人數(shù) | 10 | 15 | 5 | 10 | 5 |
(1)根據(jù)以上信息填空:這5個數(shù)的中位數(shù)是______;扇形圖中沒選擇的百分比為______;
(2)①補(bǔ)全條形統(tǒng)計圖;②若該校有1400名學(xué)生,根據(jù)調(diào)查統(tǒng)計情況,請估計全校有多少學(xué)生愿意參加環(huán)保義工社團(tuán);
(3)若小詩和小雨兩名同學(xué)在酵素制作社團(tuán)或綠植養(yǎng)護(hù)社團(tuán)中任意選擇一個參加,請用樹狀圖或列表法求出這兩名同學(xué)同時選擇綠植養(yǎng)護(hù)社團(tuán)的概率.
【答案】(1)10,10%;(2)①見解析,②全校約有280名學(xué)生愿意參加環(huán)保義工社團(tuán);(3)見解析,.
【解析】
對于(1),根據(jù)中位數(shù)的定義得到答案,利用各部分所占的百分比之和為1求出沒有選擇的百分比,
對于(2),①由(1)即可補(bǔ)全條形統(tǒng)計圖,②利用樣本估計總體的思想解決問題即可;
對于(3),畫出樹狀圖將所有可能出現(xiàn)的情況表示出來,再找出這兩名同學(xué)同時選擇綠植養(yǎng)護(hù)社團(tuán)的情況,根據(jù)概率的公式得到答案.
解:(1)這5個數(shù)從小到大排列:5,5,10,10,15,故中位數(shù)為10.
沒有選擇的占1-10%-30%-20%-10%-20%=10%
故答案為:10;10%
(2)①補(bǔ)全條形圖如下:②1400×20%=280(名),∴全校約有280名學(xué)生愿意參加環(huán)保義工社團(tuán);
(3)酵素制作社團(tuán)、綠植養(yǎng)護(hù)社團(tuán)分別用A、B表示,畫樹狀圖如下:
由樹狀圖知共有4種等可能結(jié)果,其中兩人同時選擇綠植養(yǎng)護(hù)社團(tuán)只有一種情況,∴兩人同時選擇綠植養(yǎng)護(hù)社團(tuán)的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=2,與x軸的一個交點坐標(biāo)為(4,0),其部分圖象如圖所示,下列結(jié)論:①拋物線一定過原點②方程ax2+bx+c=0(a≠0)的解為x=0或x=4,③a﹣b+c<0;④當(dāng)0<x<4時,ax2﹣bx+c<0;⑤當(dāng)x<2時,y隨x增大而增大,其中結(jié)論正確的個數(shù)( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點A(1,2)在這個函數(shù)的圖象上,求k的值;
(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系xOy 中,拋物線y=ax2+bx+3經(jīng)過點A(-1,0) 、B(3,0) 兩點,且與y軸交于點C
.
(1)求拋物線的表達(dá)式;
(2)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(點P在點Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP、DQ.
①若點P的橫坐標(biāo)為,求△DPQ面積的最大值,并求此時點D 的坐標(biāo);
②直尺在平移過程中,△DPQ面積是否有最大值?若有,求出面積的最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則BG的長為( )
A. 1B. 2C. 1.5D. 2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是線段上一點,,以點為圓心,的長為半徑作⊙,過點作的垂線交⊙于,兩點,點在線段的延長線上,連接交⊙于點,以,為邊作.
(1)求證:是⊙的切線;
(2)若,求四邊形與⊙重疊部分的面積;
(3)若,,連接,求和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了對學(xué)生進(jìn)行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動.全校學(xué)生從學(xué)校同時出發(fā),步行米到達(dá)烈士紀(jì)念館.學(xué)校要求九班提前到達(dá)目的地,做好活動的準(zhǔn)備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達(dá).分別求九(1)班、其他班步行的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級表演“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”等節(jié)目.小穎對每屆藝術(shù)節(jié)表演這些節(jié)目的班級數(shù)進(jìn)行統(tǒng)計,并繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.
(1)五屆藝術(shù)節(jié)共有________個班級表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計圖中,第四屆班級數(shù)的扇形圓心角的度數(shù)為________;
(2)補(bǔ)全折線統(tǒng)計圖;
(3)第六屆藝術(shù)節(jié),某班決定從這四項藝術(shù)形式中任選兩項表演(“經(jīng)典誦讀”、“民樂演奏”、“歌曲聯(lián)唱”、“民族舞蹈”分別用,,,表示).利用樹狀圖或表格求出該班選擇和兩項的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織全校1500名學(xué)生進(jìn)行經(jīng)典詩詞誦背活動,為了解本次系列活動的效果,學(xué)校團(tuán)委在活動開展一個月之后,隨機(jī)抽取部分學(xué)生調(diào)查了“一周詩詞誦背數(shù)量”,并根據(jù)調(diào)查結(jié)果繪制成如下的統(tǒng)計圖1和圖2.請根據(jù)相關(guān)信息,解答下列問題:
I.圖2中的值為__________;
Ⅱ.求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
Ⅲ.估計此時該校學(xué)生一周詩詞誦背6首(含6首)以上的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com