【題目】1【特殊發(fā)現(xiàn)】如圖1AB⊥BCB,CD⊥BCC,連接BD,AAF⊥BD,BDE,BCF,BF=1,BC=3,則AB·CD= ;

2【類比探究】如圖2,在線段BC上存在點(diǎn)E,F,連接AF,DE交于點(diǎn)H,若∠ABC=∠AHD=∠ECD,求證:AB·CD=BF·CE;

3【解決問題】如圖3,在等腰△ABC中,AB=AC=4EAB中點(diǎn),DAE中點(diǎn),過點(diǎn)D作直線DM∥BC,在直線DM上取一點(diǎn)F,連接BFCE于點(diǎn)H,使∠FHC=∠ABC,問:DF·BC是否為定值?若是,請(qǐng)求出,若不是,請(qǐng)說明理由.

【答案】(1)3;(2)詳見解析;(3)是,DF·BC=12,理由詳見解析.

【解析】試題分析:(1)先由余角的性質(zhì)得到A=∠CBD,從而ABF∽△BCD,再根據(jù)相似三角形的性質(zhì)列比例式求解;(2)由∠ABC=∠AHD=∠ECD,得到∠AFB=EDC,從而△ABF∽△ECD,

再根據(jù)相似三角形的性質(zhì)列比例式求解;(3法一,DA的延長線上取一點(diǎn)N,使DNF=ABC,然后由FDN∽△ABCNFB∽△BEC,得到,然后整理即可得到結(jié)論;法二,取BC的中點(diǎn)K,連接EK,EAB中點(diǎn),然后由FDB∽△EKC,得到,然后結(jié)合法一整理即可得到結(jié)論;法三,延長FD,CE交于點(diǎn)G,由法一得:ADM=AMD,ABF=ECB,然后由GMC∽△BDFGED∽△CEB,得到,然后整理即可得到結(jié)論;

解: (1) ABBC,AFBD,

∴∠A+∠AFB=90°, ∠CBD+∠AFB=90°,

∠A=∠CBD,

∵∠ABF=∠C,

△ABF∽△BCD,

,

AB·CD=BC·BF=3.

(2)容易由∠ABC=∠AHD=∠ECD,得到∠AFB=EDC,

從而△ABF∽△ECD,

那么AB·CD=BF·CE;

(3)法一:(模型法)解:是,DF·BC=12,

理由如下:

如圖,在DA的延長線上取一點(diǎn)N,使∠DNF=∠ABC,

由AB=AC,DM∥BC,可得:∠ADM=∠AMD=∠ABC=∠ACB∠FMC=∠DNF,

∴△FDN∽△ABC,且DF=NF,∴即NF·BC=ND·AB,

又由∠ABC=∠FHC,得∠ABF+∠FBC=∠FBC+∠ECB,

∴∠ABF=∠ECB,∴△NFB∽△BEC,

即NF·BC=NB·BE,

∴NB·BE=ND·AB,依題意得:AD=DE=1,BE=2,

∴NB·2=ND·4,∴NB=2ND,∴ND=BD=3,

∴NB=6,∴NF·BC=6×2=12即DF·BC=12。

法二:(平行法)取BC的中點(diǎn)K,連接EK,由E為AB中點(diǎn),

∴EK AC,得∠ADM=∠ABC=∠EKB,

∴∠BDF=∠EKC,再由法一可知:∠DBF=∠ECB,

∴△FDB∽△EKC,∴,即DF·CK=EK·DB,

由法一得:DB=3,EK=BE=2,CK=BC,

∴DF·BC=2×3,∴DF·BC=12。

法三:延長FD,CE交于點(diǎn)G,由法一得:∠ADM=∠AMD,∠ABF=∠ECB,

∴∠BDM=∠CMD,又∵DF∥BC,∴∠G=∠ECB,∴∠G=∠ABF,

∴△GMC∽△BDF,∴,∴DF·GM=MC·DB=3×3=9,

又∵GD∥BC,DE=1,BE=2,

∴△GED∽△CEB,∴,

同理,∴GM=GD+DM=BC+BC=BC,

∴DF·BC=9,∴DF·BC=12。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)從以下兩個(gè)小題中任選一題作答,若多選,則按第一題計(jì)分.

A)兒童節(jié)期間,文具商店搞促銷活動(dòng),同時(shí)購買一個(gè)書包和一個(gè)文具盒可以打8折優(yōu)惠,能比標(biāo)價(jià)省13.2元,已知書包標(biāo)價(jià)比文具盒標(biāo)價(jià)的3倍少6元.那么設(shè)一個(gè)文具盒標(biāo)價(jià)為x元,依據(jù)題意列方程得________

B)用科學(xué)記算器計(jì)算: ________(計(jì)算結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦CD⊥AB于點(diǎn)E,AM是△ACD的外角∠DAF的平分線.

(1)求證:AM是O的切線;

(2)若∠D = 60°,AD = 2,射線CO與AM交于N點(diǎn),請(qǐng)寫出求ON長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確保OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測雷達(dá),雷達(dá)的有效探測范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測)

(1)若三艘軍艦要對(duì)OBC海域進(jìn)行無盲點(diǎn)監(jiān)控,則雷達(dá)的有效探測半徑r至少為多少海里?

(2)現(xiàn)有一艘敵艦A從東部接近OBC海域,在某一時(shí)刻軍艦B測得A位于北偏東60°方向上,同時(shí)軍艦C測得A位于南偏東30°方向上,求此時(shí)敵艦A離OBC海域的最短距離為多少海里?

(3)若敵艦A沿最短距離的路線以20海里/小時(shí)的速度靠近OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)k值相同時(shí),我們把正比例函數(shù)與反比例函數(shù)叫做關(guān)聯(lián)函數(shù)”.

(1)如圖,若k>0,這兩個(gè)函數(shù)圖象的交點(diǎn)分別為A,B,求點(diǎn)AB的坐標(biāo)(用k表示);

(2)k=1,點(diǎn)P是函數(shù)在第一象限內(nèi)的圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B重合),設(shè)點(diǎn)P的坐標(biāo)為(),其中m>0m≠2.作直線PA,PB分別與x軸交于點(diǎn)CD,則△PCD是等腰三角形,請(qǐng)說明理由;

(3)(2)的基礎(chǔ)上,是否存在點(diǎn)P使△PCD為直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備用9萬元購進(jìn)50臺(tái)電視機(jī),為了節(jié)省費(fèi)用,學(xué)校打算以出廠價(jià)從廠家直接采購,已知廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500,乙種每臺(tái)2100,丙種每臺(tái)2500.

(1)若學(xué)校同時(shí)購進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬元,請(qǐng)研究一下學(xué)校的采購方案;

(2)若學(xué)校去商場購買,在出廠價(jià)相同的情況下,商場銷售一臺(tái)甲種電視機(jī)獲利150元,銷售一臺(tái)乙種電視機(jī)獲利200元,銷售一臺(tái)丙種電視機(jī)獲利250元,在(1)的條件下,學(xué)校選擇哪種方案省下的錢最多?

(3)若學(xué)校準(zhǔn)備用9萬元同時(shí)購進(jìn)三種不同的電視機(jī)50臺(tái),請(qǐng)你設(shè)計(jì)進(jìn)貨方案(直接寫出方案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社會(huì)團(tuán)體準(zhǔn)備購進(jìn)甲、乙兩種防護(hù)服捐給一線抗疫人員,經(jīng)了解,購進(jìn)5件甲種防護(hù)服和4件乙種防護(hù)服需要2萬元,購進(jìn)10件甲種防護(hù)服和3件乙種防護(hù)服需要3萬元.

1)甲種防護(hù)服和乙種防護(hù)服每件各多少元?

2)實(shí)際購買時(shí),發(fā)現(xiàn)廠家有兩種優(yōu)惠方案,方案一:購買甲種防護(hù)服超過20件時(shí),超過的部分按原價(jià)的8折付款,乙種防護(hù)服沒有優(yōu)惠;方案二:兩種防護(hù)服都按原價(jià)的9折付款,該社會(huì)團(tuán)體決定購買件甲種防護(hù)服和30件乙種防護(hù)服.

①求兩種方案的費(fèi)用與件數(shù)的函數(shù)解析式;

②請(qǐng)你幫該社會(huì)團(tuán)體決定選擇哪種方案更合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DAC上,點(diǎn)F、G分別在AC、BC的延長線上,CE平分∠ACBBD于點(diǎn)O,且∠EOD+OBF180°,∠F=∠G.則圖中與∠ECB相等的角有( )

A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知∠AOB25°42′,則∠AOB的余角為   ,∠AOB的補(bǔ)角為   ;

2)已知∠AOBα,∠BOCβOM平分∠AOB,ON平分∠BOC,用含α,β的代數(shù)式表示∠MON的大小;

3)如圖,若線段OAOB分別為同一鐘表上某一時(shí)刻的時(shí)針與分針,且∠AOB25°,則經(jīng)過多少時(shí)間后,AOB的面積第一次達(dá)到最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案