【題目】如圖,點A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣k在第二象限內(nèi)的交點,AB⊥x軸于點B,且S△ABO=3.
(1)求這兩個函數(shù)的表達式;
(2)求一次函數(shù)與反比例函數(shù)的兩個交點A,C的坐標(biāo)和△AOC的面積.
【答案】(1) 反比例函數(shù)的解析式為:y=﹣,一次函數(shù)的解析式為:y=﹣x+5;(2)A的坐標(biāo)為(﹣1,6),C點坐標(biāo)為(6,﹣1),.
【解析】
(1)先根據(jù)反比例函數(shù)的圖象與一次函數(shù)y=﹣x﹣k的圖象與y軸正半軸相交判斷出k的符號,再由△ABO的面積求出k的值,進而可得出兩個函數(shù)的解析式;
(2)先利用直線的解析式確定D點坐標(biāo),再解由兩個解析式所組成的方程組得到A點和C點坐標(biāo),然后利用S△AOC=S△AOD+S△COD進行計算即可.
(1)∵反比例函數(shù)y的圖象在二、四象限,一次函數(shù)y=﹣x﹣k的圖象與y軸正半軸相交,∴k﹣1<0,﹣k>0,∴k<0.
∵S△ABO|k﹣1|=3,∴k=﹣5,∴反比例函數(shù)的解析式為:y,一次函數(shù)的解析式為:y=﹣x+5;
(2)直線AC交x軸于D點,對于y=﹣x+5,令y=0,則x=5,則D點坐標(biāo)為(5,0),解方程組,得或,則點A的坐標(biāo)為(﹣1,6),C點坐標(biāo)為(6,﹣1),則S△AOC=S△AOD+S△COD5×65×1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結(jié)OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9,
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
據(jù)此,小明猜想:對于任意銳角α,均有sin2α+sin2(90°-α)=1.
(1)當(dāng)α=30°時,驗證sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,請給予證明;若不成立,請舉出一個反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A的坐標(biāo)為(3,4),點B的坐標(biāo)為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為________.(結(jié)果保留2個有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,延長線段AB交y 軸于點C,且點B為線段AC中點,過點A作AD⊥x軸子點D,點E 為線段OD的三等分點,且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( 。
A. ﹣12 B. ﹣10 C. ﹣9 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個陽光明媚,微風(fēng)習(xí)習(xí)的周末,小明和小強一起到聶耳文化廣場放風(fēng)箏,放了一會兒,兩個人爭吵起來:小明說:“我的風(fēng)箏飛得比你的高”.小強說:“我的風(fēng)箏引線比你的長,我的風(fēng)箏飛得更高”.誰的風(fēng)箏飛得更高呢?于是他們將兩個風(fēng)箏引線的一段都固定在地面上的C處(如圖),現(xiàn)已知小明的風(fēng)箏引線(線段AC)長30米,小強的風(fēng)箏引線(線段BC)長36米,在C處測得風(fēng)箏A的仰角為60°,風(fēng)箏B的仰角為45°,請通過計算說明誰的風(fēng)箏飛得更高?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只貓頭鷹蹲在一棵樹AC的B(點B在AC上)處,發(fā)現(xiàn)一只老鼠躲進短墻DF的另一側(cè),貓頭鷹的視線被短墻遮住,為了尋找這只老鼠,它又飛至樹頂C處,已知短墻高DF=4米,短墻底部D與樹的底部A的距離為2.7米,貓頭鷹從C點觀測F點的俯角為53°,老鼠躲藏處M(點M在DE上)距D點3米.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(1)貓頭鷹飛至C處后,能否看到這只老鼠?為什么?
(2)要捕捉到這只老鼠,貓頭鷹至少要飛多少米(精確到0.1米)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=90°,點A、B在∠C的兩邊上,CA=30,CB=20,連接AB.點P從點B出發(fā),以每秒4個單位長度的速度沿BC的方向運動,到點C停止.當(dāng)點P與B、C兩點不重合時,作PD⊥BC交AB于點D,作DE⊥AC于點E.F為射線CB上一點,使得∠CEF=∠ABC.設(shè)點P運動的時間為x秒.
(1)用含有x的代數(shù)式表示CE的長.
(2)求點F與點B重合時x的值.
(3)當(dāng)點F在線段CB上時,設(shè)四邊形DECP與四邊形DEFB重疊部分圖形的面積為y(平方單位).求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過網(wǎng)格點A、B、C,請在網(wǎng)格中進行下列操作:
(1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標(biāo)為 ;
(2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);
(3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com