【題目】在平面直角坐標(biāo)系xOy中,直線y=2x﹣3與y軸交于點(diǎn)A,點(diǎn)A與點(diǎn)B關(guān)于x軸對(duì)稱,過(guò)點(diǎn)B作y軸的垂線l,直線l與直線y=2x﹣3交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如果拋物線y=nx2﹣4nx+5n(n>0)與線段BC有唯一公共點(diǎn),求n的取值范圍.

【答案】
(1)解:∵直線y=2x﹣3與y軸交于點(diǎn)A(0,﹣3),

∴點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)B(0,3),l為直線y=3,

∵直線y=2x﹣3與直線l交于點(diǎn)C,

∴點(diǎn)C坐標(biāo)為(3,3),


(2)解:∵拋物線y=nx2﹣4nx+5n(n>0),

∴y=nx2﹣4nx+4n+n=n(x﹣2)2+n(n>0)

∴拋物線的對(duì)稱軸為直線x=2,頂點(diǎn)坐標(biāo)為(2,n),

∵點(diǎn)B(0,3),點(diǎn)C(3,3),

①當(dāng)n>3時(shí),拋物線的最小值為n>3,與線段BC無(wú)公共點(diǎn);

②當(dāng)n=3時(shí),拋物線的頂點(diǎn)為(2,3),在線段BC上,此時(shí)拋物線與線段BC有一個(gè)公共點(diǎn);

③當(dāng)0<n<3時(shí),拋物線最小值為n,與線段BC有兩個(gè)公共點(diǎn);

如果拋物線y=n(x﹣2)2+n經(jīng)過(guò)點(diǎn)B,則3=5n,解得n= ,

由拋物線的對(duì)稱軸為直線x=2,可知拋物線經(jīng)過(guò)點(diǎn)(4,3),

點(diǎn)(4,3)不在線段BC上,此時(shí)拋物線與線段BC有一個(gè)公共點(diǎn)B;

如果拋物線y=n(x﹣2)2+n經(jīng)過(guò)點(diǎn)C,則3=2n,解得n= ,

由拋物線的對(duì)稱軸為直線x=2,可知拋物線經(jīng)過(guò)點(diǎn)(1,3),

點(diǎn)(1,3)在線段BC上,此時(shí)拋物線與線段BC有兩個(gè)公共點(diǎn);

綜上所述,當(dāng) ≤n< 或n=3時(shí),拋物線與線段BC有一個(gè)公共點(diǎn).


【解析】(1)根據(jù)題意分別求出點(diǎn)A、B、C的坐標(biāo);(2)求得拋物線的對(duì)稱軸,頂點(diǎn)的坐標(biāo);再分類討論①當(dāng)n>3時(shí);②當(dāng)n=3時(shí);③當(dāng)0<n<3時(shí),拋物線y=nx2﹣4nx+5n(n>0)與線段BC有唯一公共點(diǎn),求n的取值范圍.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用一次函數(shù)的性質(zhì)和二次函數(shù)的性質(zhì),掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減;增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列各式中的x:

(1)16x2-361=0;       (2)(x-1)2=25;

(3)27=216;       (4) (x-2)3 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE是高,AF是△ABC外角∠CAD的平分線.
(1)用尺規(guī)作圖:作∠AEC的平分線EN(保留作圖痕跡,不寫作法和證明);
(2)設(shè)EN與AF交于點(diǎn)M,判斷△AEM的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:( 1+tan60°+|﹣ |﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MAN=15°,AB=BC=CD=DE=EF,則∠FEM=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰直角三角形BCD中,∠BDC=90°, BF平分∠DBC,與CD相交于點(diǎn)F,延長(zhǎng)BDA,使DA=DF.

(1)求證:△FBD≌△ACD;

(2)延長(zhǎng)BFAC于點(diǎn)E,且BEAC,求證:CE=BF;

(3)(2)的條件下,HBC邊的中點(diǎn),連接DH,與BE相交于點(diǎn)G,如圖②. 試探索CE,GE,BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以x為自變量的二次函數(shù)y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m為不小于0的整數(shù),它的圖象與x軸的交點(diǎn)A在原點(diǎn)左邊,交點(diǎn)B在原點(diǎn)右邊.
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)點(diǎn)C為此二次函數(shù)圖象上的一點(diǎn),且滿足△ABC的面積等于10,請(qǐng)求出點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ACBD為對(duì)角線,ABBCACBD,則∠ADC的大小為(   )

A. 120°B. 135°C. 145°D. 150°

查看答案和解析>>

同步練習(xí)冊(cè)答案