【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對(duì)折成∠COBOAOB重合),從O點(diǎn)引一條射線OE,使∠BOE=EOC,再沿OE把角剪開,若剪開后得到的3個(gè)角中最大的一個(gè)角為76°,則∠AOB=_____________°.

【答案】114°

【解析】

由折疊的性質(zhì)得,COE′=∠COEBOE=∠AOE′. 最大的一個(gè)角為76°,可知EOE′=76°,再由BOE=EOC,可求出∠BOE、∠AOE的度數(shù),進(jìn)而求出∠AOB的度數(shù).

如圖,

由折疊的性質(zhì)得,COE′=∠COE,BOE=∠AOE′.

EOE′=76°,

∴∠COE′=∠COE=38°

BOE=EOC,∠AOE′=COE′,

∴∠BOE=∠AOE′=19°,

∴∠AOB=19°+76°+19°=114°

故答案為:114.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(﹣4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過(guò)P點(diǎn)作BP的垂線,與過(guò)點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BD與y軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).

(1)∠PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (用t表示);

(2)當(dāng)t為何值時(shí),△PBE為等腰三角形?

(3)探索△POE周長(zhǎng)是否隨時(shí)間t的變化而變化?若變化,說(shuō)明理由;若不變,試求這個(gè)定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次函數(shù)ykx-6中,已知yx的增大而減小.下列關(guān)于反比例函數(shù)y

的描述,其中正確的是( )

A. 當(dāng)x>0時(shí),y>0 B. yx的增大而增大

C. yx的增大而減小 D. 圖像在第二、四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別.
(1)隨機(jī)地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A、B中各抽取一張,請(qǐng)你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問(wèn)這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?
(3)如果不公平請(qǐng)你修改游戲規(guī)則使游戲規(guī)則對(duì)甲乙雙方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸、y軸分別相交于點(diǎn)A(﹣1,0)、B(0,3)兩點(diǎn),其頂點(diǎn)為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個(gè)交點(diǎn)為E. 求△ODE的面積;拋物線的對(duì)稱軸上是否存在點(diǎn)P使得△PAB的周長(zhǎng)最短.若存在請(qǐng)求出P點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知關(guān)于x的方程kx=11﹣2x有整數(shù)解,則負(fù)整數(shù)k的值為   

(2)若a+b+c=0,且abc,以下結(jié)論:

a>0,c>0;

②關(guān)于x的方程ax+b+c=0的解為x=1;

a2=(b+c2;

的值為02;

⑤在數(shù)軸上點(diǎn)AB、C表示數(shù)a、bc,若b<0,則線段AB與線段BC的大小關(guān)系是ABBC

其中正確的結(jié)論是   (填寫正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,36,10這樣的數(shù)稱為三角形數(shù),而把14,9,16這樣的數(shù)稱為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是( 。

A. 361521 B. 25916 C. 13310 D. 491831

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:?jiǎn)栴}:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC,探究PGPC的位置關(guān)系。

(1)請(qǐng)你寫出上面問(wèn)題中線段PGPC的位置關(guān)系,并說(shuō)明理由;

(2)將圖1中的菱形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問(wèn)題中的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,

(3)將菱形ABCD和菱形BEFG均改成正方形,如圖3,PDF的中點(diǎn),此時(shí)PGPC的位置關(guān)系和數(shù)量關(guān)系分別是什么?直接寫出答案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某長(zhǎng)方形廣場(chǎng)的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長(zhǎng)方形長(zhǎng)為a米,寬為b米.

(1)請(qǐng)式表示廣場(chǎng)空地的面積;

(2)若長(zhǎng)方形的長(zhǎng)為300米,寬為200米,圓形的半徑為10米,計(jì)算廣場(chǎng)空地的面積(計(jì)算結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊(cè)答案