【題目】如圖1,將矩形紙片ABCD(ADAB)沿BD折疊,點(diǎn)C落在點(diǎn)C.

(1)連接BD,請(qǐng)用直尺和圓規(guī)在圖1中作出點(diǎn)C;(不寫作法,保留作圖痕跡)

(2)BCAD相交于點(diǎn)EEBED的數(shù)量關(guān)系是    ;連接AC,則ACBD的位置關(guān)系是   ;

(3)(2)的條件下,若AB4AD8,求BE的長(zhǎng).(提示(2)、(3)兩題可以在圖2中作出草圖完成)

【答案】(1)答案見解析;(2)相等,平行;(3)BE=5

【解析】

(1)過點(diǎn)CBD的垂線垂足為H,以點(diǎn)H為圓心,CH為半徑作弧畫弧找到C′;

2)通過證明△AEB得出相應(yīng)結(jié)果

(3)利用勾股定理建立方程求解即可

1)如下圖

2)如下圖

連接D

由折疊關(guān)系得到:D=CD=AB,∠BAC=∠B,

又∵∠AEB=∠

∴△AEB(AAS)

EB=ED

3)在ABE

∴設(shè),則

BE=5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)D,點(diǎn)C為拋物線的頂點(diǎn),過B,C兩點(diǎn)作直線BC,拋物線上的一點(diǎn)F的橫坐標(biāo)是,過點(diǎn)F作直線FG//BCx軸于點(diǎn)G.

1)點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),連接PG與直線BC交于點(diǎn)E,連接EF,PF,當(dāng)的面積最大時(shí),在x軸上有一點(diǎn)R,使PR+CR的值最小,求出點(diǎn)R的坐標(biāo),并直接寫出PR+CR的最小值;

2)如圖2,連接AD,作AD的垂直平分線與x軸交于點(diǎn)K,平移拋物線,使拋物線的頂點(diǎn)C在射線BC上移動(dòng),平移的距離是t,平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′,連接A′C′,A′KC′K,A′C′K是否能為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2x2+bx+c經(jīng)過(﹣3,0),(1,0)兩點(diǎn)

1)求拋物線的解析式,并求出其開口方向和對(duì)稱軸

2)用配方法求出該拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,BC4tanB2,以AB的中點(diǎn)D為圓心,r為半徑作⊙D,如果點(diǎn)B在⊙D內(nèi),點(diǎn)C在⊙D外,那么r可以。ā 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【提出問題】

1)如圖1,在等邊ABC中,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類比探究】

2)如圖2,在等邊ABC中,點(diǎn)MBC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請(qǐng)說明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,交邊于點(diǎn)

1)當(dāng)點(diǎn)恰好重合時(shí)(如圖1),求的長(zhǎng);

2)問:是否可能使、都相似?若能,請(qǐng)求出此時(shí)的長(zhǎng);若不能,請(qǐng)說明理由(如圖2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,已知,,,點(diǎn)的延長(zhǎng)線上,點(diǎn)的延長(zhǎng)線上,有下列結(jié)論:①;②;③;④若,則點(diǎn)的距離為.則其中正確結(jié)論的個(gè)數(shù)是( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案