【題目】已知:點(diǎn)E、點(diǎn)G分別在直線AB、直線CD上,點(diǎn)F在兩直線外,連接EF、FG

(1)如圖1,ABCD,求證:∠AEF+FGC=EFG;

(2)若直線AB與直線CD不平行,連接EG,且EG同時(shí)平分∠BEF和∠FGD.

①如圖2,請(qǐng)?zhí)骄俊?/span>AEF、FGC、EFG之間的數(shù)量關(guān)系?并說(shuō)明理由;

②如圖3,AEF比∠FGC3倍多10°,FGC是∠EFG,則∠EFG=______°(直接寫(xiě)出答案).

【答案】(1)證明見(jiàn)解析;(2)①2EFG=AEF+FGC;25.

【解析】

(1)過(guò)FFQAB,利用平行線的性質(zhì),即可得到∠AEF+FGC=EFQ+GFQ=EFG;

(2)①延長(zhǎng)AB,CD,交于點(diǎn)P,依據(jù)∠FEP=180°-AEF,FGP=180°-FGC,即可得到∠FEP+FGP=360°-(AEF+FGC),再根據(jù)四邊形內(nèi)角和,即可得到四邊形EFGP中,∠F+P=360°-(FEP+FGP)=AEF+FGC,進(jìn)而得出結(jié)論;

②根據(jù)2EFG=AEF+FGC,AEF比∠FGC3倍多10°,FGC是∠EFG,整理即可得到答案.

(1)如圖1,過(guò)FFQAB,

ABCD,

PQCD,

∴∠AEF=QFE,FGC=GFQ,

∴∠AEF+FGC=EFQ+GFQ=EFG;

(2)①如圖2,延長(zhǎng)AB,CD,交于點(diǎn)P,

EG同時(shí)平分∠BEF和∠FGD,

∴∠FEG=PEG,FGE=PGE,

∴∠F=P,

∵∠FEP=180°﹣AEF,FGP=180°﹣FGC,

∴∠FEP+FGP=360°﹣(AEF+FGC),

∵四邊形EFGP中,∠F+P=360°﹣(FEP+FGP)=360°﹣[360°﹣(AEF+FGC)]=AEF+FGC,

2EFG=AEF+FGC;

②由①可知:2EFG=AEF+FGC=3FGC+10°+FGC=4FGC+10°,

又∵∠FGC=EFG

2EFG=EFG+10°,

∴∠EFG=25°.

故答案為:25.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的三個(gè)頂點(diǎn)A、B、D均在拋物線y=ax2﹣4ax+3(a<0)上.若點(diǎn)A是拋物線的頂點(diǎn),點(diǎn)B是拋物線與y軸的交點(diǎn),則AC長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x的頂點(diǎn)為A,與x軸分別交于O、B兩點(diǎn),過(guò)頂點(diǎn)A分別作AC⊥x軸于點(diǎn)C,AD⊥y軸于點(diǎn)D,連接BD,交AC于點(diǎn)E,則△ADE與△BCE的面積和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E是邊AB的中點(diǎn),連接DE,△ADE沿DE折疊后得到△FDE,點(diǎn)F在矩形ABCD的內(nèi)部,延長(zhǎng)DF交于BC于點(diǎn)G.
(1)求證:FG=BG;
(2)若AB=6,BC=4,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】思考:填空,并探究規(guī)律

如圖1,圖2,OAEC,OBED,AOB=30°,則圖1中∠CED=_____°;圖2中∠CED=_____°;用一句話概括你發(fā)現(xiàn)的規(guī)律_________________.

應(yīng)用:已知∠AOB=80°,CED=x°,OACE,OBED,則x的值為_________(直接寫(xiě)出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】榮慶公司計(jì)劃從商店購(gòu)買(mǎi)同一品牌的臺(tái)燈和手電筒,已知購(gòu)買(mǎi)一個(gè)臺(tái)燈比購(gòu)買(mǎi)一個(gè)手電筒多用20元,若用400元購(gòu)買(mǎi)臺(tái)燈和用160元購(gòu)買(mǎi)手電筒,則購(gòu)買(mǎi)臺(tái)燈的個(gè)數(shù)是購(gòu)買(mǎi)手電筒個(gè)數(shù)的一半.

(1)求購(gòu)買(mǎi)該品牌一個(gè)臺(tái)燈、一個(gè)手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購(gòu)買(mǎi)一個(gè)該品牌臺(tái)燈贈(zèng)送一個(gè)該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個(gè)數(shù)是臺(tái)燈個(gè)數(shù)的2倍還多8個(gè),且該公司購(gòu)買(mǎi)臺(tái)燈和手電筒的總費(fèi)用不超過(guò)670元,那么榮慶公司最多可購(gòu)買(mǎi)多少個(gè)該品牌臺(tái)燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BC=9,AB的垂直平分線交BC與點(diǎn)M,AC的垂直平分線交BC于點(diǎn)N,則△AMN的周長(zhǎng)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為2,∠DAB=60°,E為BC的中點(diǎn),在對(duì)角線AC上存在一點(diǎn)P,使△PBE的周長(zhǎng)最小,則△PBE的周長(zhǎng)的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新學(xué)期開(kāi)學(xué),兩摞規(guī)格相同準(zhǔn)備發(fā)放的數(shù)學(xué)課本整齊地疊放在講臺(tái)上,請(qǐng)根據(jù)圖中所給的數(shù)據(jù)信息,解答下列問(wèn)題:

(1)一本數(shù)學(xué)課本的高度是多少厘米?

(2)講臺(tái)的高度是多少厘米?

(3)請(qǐng)寫(xiě)出整齊疊放在桌面上的x本數(shù)學(xué)課本距離地面的高度的代數(shù)式(用含有x的代數(shù)式表示);

(4)若桌面上有56本同樣的數(shù)學(xué)課本,整齊疊放成一摞,從中取走18本后,求余下的數(shù)學(xué)課本距離地面的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案