【題目】如圖,在△ABC中,D是BC邊上的中點,∠BDE=∠CDF,請你添加一個條件,使DE=DF成立.你添加的條件是 .(不再添加輔助線和字母)
【答案】∠B=∠C(答案不唯一)。
【解析】試題分析:答案不唯一根據(jù)AB=AC,推出∠B=∠C,根據(jù)ASA證出△BED和△CFD全等即可;添加∠BED=∠CDF,根據(jù)AAS即可推出△BED和△CFD全等;根據(jù)∠AED=∠AFD推出∠B=∠C,根據(jù)ASA證△BED≌△CFD即可.
解:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD,或∠AED=∠AFD等;
理由是:①∵AB=AC,
∴∠B=∠C,
根據(jù)ASA證出△BED≌△CFD,即可得出DE=DF;
②由∠B=∠C,∠BDE=∠CDF,BD=DC,根據(jù)ASA證出△BED≌△CFD,即可得出DE=DF;
③由∠BED=∠CFD,∠BDE=∠CDF,BD=DC,根據(jù)AAS證出△BED≌△CFD,即可得出DE=DF;
④∵∠AED=∠AFD,∠AED=∠B+∠BDE,∠AFD=∠C+∠CDF,
又∵∠BDE=∠CDF,
∴∠B=∠C,
即由∠B=∠C,∠BDE=∠CDF,BD=DC,根據(jù)ASA證出△BED≌△CFD,即可得出DE=DF;
故答案為:答案不唯一,如AB=AC或∠B=∠C或∠BED=∠CFD或∠AED=∠AFD.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當△BPD與△CQP全等時,v的值為________厘米/秒.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A.若∣a∣=∣b∣,則a=bB.若a=b,則∣a∣=∣b∣
C.沒有最小的有理數(shù)D.相反數(shù)等于它本身的數(shù)只有0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果把存入3萬元記作+3萬元,那么支出2萬元應記作__________, -4萬元表示的意思是________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,BC=AC,∠BCA=90°,P為直線AC上一點,過點A作AD⊥BP于點D,交直線BC于點Q.
(1)如圖1,當P在線段AC上時,求證:BP=AQ;
(2)如圖2,當P在線段CA的延長線上時,(1)中的結(jié)論是否成立?________(填“成立”或“不成立”)
(3)在(2)的條件下,當∠DBA=________時,存在AQ=2BD,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每件50元,售價為每件60元,每個月可賣出200件;如果每件商品的售價每上漲1元,則每個月少賣10件.設每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)若每個月的利潤不低于2160元,售價應在什么范圍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x,的方程組,給出下列結(jié)論:①是方程組的解;②無論a取何值, x,y的值都不可能互為相反數(shù);③當a=1時,方程組的解也是方程x+y=4﹣a的解;④,都為自然數(shù)的解有4對.其中正確的為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com