如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框ABCD,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則現(xiàn)在A、C相對的螺絲的距離的最大值,以及現(xiàn)在B、D相對的螺絲的距離的最大值分別為

A. 5和7         B. 10和7         C. 5和8        D. 10和8
A

試題分析:若兩個螺絲的距離最大,則此時這個木框的形狀為三角形,可根據(jù)三條木棍的長來判斷有幾種三角形的組合,然后分別找出這些三角形的最長邊即可.
解: ①選2+3、4、6作為三角形,則三邊長為5、4、6;6-5<4<6+5,能構(gòu)成三角形,此時A、C相對的螺絲的距離為5,B、D相對的螺絲的距離小于7;
②選3+4、6、2作為三角形,則三邊長為2、7、6;6-2<7<6+2,能構(gòu)成三角形,此時A、C相對的螺絲的距離小于5,B、D相對的螺絲的距離為7;
③選4+6、2、3作為三角形,則三邊長為10、2、3;2+3<10,不能構(gòu)成三角形,此種情況不成立;
綜上所述,A、C相對的螺絲的距離的最大值為5,B、D相對的螺絲的距離的最大值為7
故選A.
點評:能夠正確的判斷出調(diào)整角度后三角形木框的組合方法是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,則BD的長為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,∠ACB=90°,∠B=30°,AD是角平分線,DE⊥AB于E,AD、CE相交于點H,則圖中的等腰三角形有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,D、E分別是AC、BC上的點,若△ADB≌△EDB≌△EDC,則∠C的度數(shù)是(     )

A.15°       B.20°       C.25°        D.30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F.

(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫做法,保留作圖痕跡);

(2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡單說明理由;

(3)運用(1)、(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,要測量池塘兩岸相對的兩點B,E的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,AC=BC,點D在邊AB上,連接CD,將線段CD繞點C順時針旋轉(zhuǎn)90°至CE位置,連接AE.

(1)求證:AB⊥AE;
(2)若BC2=AD•AB,求證:四邊形ADCE為正方形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將兩張矩形紙片如圖所示擺放,使其中一張矩形紙片的一個頂點恰好落在另一張矩形紙片的一條邊上,則∠1+∠2=        度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2,P是AC上的一個動點.
(1)直接寫出AD=_____,AC=_______,BC=_______,四邊形ABCD的面積=______;
(2)當點P在運動過程中出現(xiàn)PD=BC時,求此時∠PDA的度數(shù);
(3)當點P運動到什么位置時,以D,P,B,Q為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時□DPBQ的面積.

查看答案和解析>>

同步練習冊答案