【題目】某學(xué)校為了加強(qiáng)訓(xùn)練學(xué)生的籃球和足球運(yùn)球技能,準(zhǔn)備購(gòu)買(mǎi)一批籃球和足球用于訓(xùn)練,已知1個(gè)籃球和2個(gè)足球共需116元;2個(gè)籃球和3個(gè)足球共需204

求購(gòu)買(mǎi)1個(gè)籃球和1個(gè)足球各需多少元?

若學(xué)校準(zhǔn)備購(gòu)進(jìn)籃球和足球共40個(gè),并且總費(fèi)用不超過(guò)1800元,則籃球最多可購(gòu)買(mǎi)多少個(gè)?

【答案】(1)購(gòu)買(mǎi)一個(gè)籃球需60元,購(gòu)買(mǎi)一個(gè)足球需28元;(2)籃球最多可購(gòu)買(mǎi)21個(gè).

【解析】

(1)設(shè)購(gòu)買(mǎi)一個(gè)籃球元,購(gòu)買(mǎi)一個(gè)足球元,根據(jù)“1個(gè)籃球和2個(gè)足球共需116,2個(gè)籃球和3個(gè)足球共需204元”,即可得出關(guān)于、的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)購(gòu)買(mǎi)個(gè)籃球,則購(gòu)買(mǎi)的足球數(shù)為,根據(jù)費(fèi)用=單價(jià)×數(shù)量分別求出籃球和足球的費(fèi)用,二者相加便是總費(fèi)用,總費(fèi)用不超過(guò)1800,列出關(guān)于的一元一次不等式,解之即可得出結(jié)論.

解:設(shè)購(gòu)買(mǎi)一個(gè)籃球的需x元,購(gòu)買(mǎi)一個(gè)足球的需y元,

依題意得,

解得

答:購(gòu)買(mǎi)一個(gè)籃球需60元,購(gòu)買(mǎi)一個(gè)足球需28元;

設(shè)購(gòu)買(mǎi)m個(gè)籃球,則足球數(shù)為

依題意得:,

解得:

m為正整數(shù),

答:籃球最多可購(gòu)買(mǎi)21個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點(diǎn)B、點(diǎn)C,與反比例函數(shù)y= 的圖象在第四象限的相交于點(diǎn)P,并且PA⊥y軸于點(diǎn)A,已知A (0,﹣6),且SCAP=18.
(1)求上述一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)設(shè)Q是一次函數(shù)y=kx+3圖象上的一點(diǎn),且滿(mǎn)足△OCQ的面積是△BCO面積的2倍,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定向越野作為一種新興的運(yùn)動(dòng)項(xiàng)目,深受人們的喜愛(ài). 這種定向運(yùn)動(dòng)是利用地圖和指北針到訪(fǎng)地圖上所指示的各個(gè)點(diǎn)標(biāo),以最短時(shí)間按序到達(dá)所有點(diǎn)標(biāo)者為勝. 下面是我區(qū)某校進(jìn)行定向越野活動(dòng)中,中年男子組的成績(jī)(單位:分:秒).

9:01 14:45 9:46 19:22 11:20 18:47 11:40 12:32 11:52 13:45

22:27 15:00 17:30 13:22 18:34 10:45 19:24 16:26 21:33 15:31

19:50 14:27 15:55 16:07 20:43 12:13 21:41 14:57 11:39 12:45

12:57 15:31 13:20 14:50 14:57 9:41 12:13 14:27 12:25 12:38

例如,用時(shí)最少的趙老師的成績(jī)?yōu)?:01,表示趙老師的成績(jī)?yōu)?分1.

以下是根據(jù)某校進(jìn)行定向越野活動(dòng)中,中年男子組的成績(jī)中的數(shù)據(jù),繪制的統(tǒng)計(jì)圖表的一部分.

某校中年男子定向越野成績(jī)分段統(tǒng)計(jì)表

分組/分

頻數(shù)

頻率

9≤x<11

4

0.1

11≤x<13

b

0.275

13≤x<15

9

0.225

15≤x<17

6

d

17≤x<19

3

0.075

19≤x<21

4

0.1

21≤x<23

3

0.075

合計(jì)

a

c

(1)這組數(shù)據(jù)的極差是____________;

(2)上表中的a =____________ ,b =____________ , c =____________, d =____________;

(3)補(bǔ)全頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是直線(xiàn)AB上一點(diǎn),OC為任一條射線(xiàn),OD平分∠AOC;OE平分∠BOC

(1)圖中∠BOD的鄰補(bǔ)角為______;AOE的鄰補(bǔ)角為______.

(2)如果∠COD=25°,那么∠COE=______;如果∠COD=60°,那么∠COE=______;

(3)試猜想∠COD與∠COE具有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為直線(xiàn)AB上一點(diǎn),∠COE=90°,OF平分∠AOE.

(1)若∠COF=40°,求∠BOE的度數(shù).

(2)若∠COF=α(0°<α<90°),則∠BOE=______(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中,最小的數(shù)是(
A.﹣2
B.﹣0.1
C.0
D.|﹣1|

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,AD上,且AF=CE.

(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;

(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長(zhǎng)為6的菱形,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)計(jì)劃購(gòu)買(mǎi)A型和B型課桌凳共200套.經(jīng)招標(biāo),購(gòu)買(mǎi)一套A型課桌凳比購(gòu)買(mǎi)一套B型課桌凳少用40元,且購(gòu)買(mǎi)4套A型和5套B型課桌凳共需1820元.
(1)求購(gòu)買(mǎi)一套A型課桌凳和一套B型課桌凳各需多少元?
(2)學(xué)校根據(jù)實(shí)際情況,要求購(gòu)買(mǎi)這兩種課桌凳總費(fèi)用不能超過(guò)40880元,并且購(gòu)買(mǎi)A型課桌凳的數(shù)量不能超過(guò)B型課桌凳數(shù)量的 ,求該校本次購(gòu)買(mǎi)A型和B型課桌凳共有幾種方案?哪種方案的總費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校有一塊長(zhǎng)為30米,寬為10米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道.

若設(shè)計(jì)人行通道的寬度為2米,那么修建的兩塊矩形綠地的面積共為多少平方米?

若要修建的兩塊矩形綠地的面積共為216平方米,求人行通道的寬度.

查看答案和解析>>

同步練習(xí)冊(cè)答案