【題目】在平面直角坐標系中,拋物線yx2如圖所示,已知A點坐標為(1,1),過點AAA1x軸交拋物線于點A1,過點A1A1A2OA交拋物線于點A2,過點A2A2A3x軸交拋物線于點A3,過點A3A3A4OA交拋物線于點A4,過點A4A4A5x軸交拋物線于點A5,則點A5的坐標為_____

【答案】(39)

【解析】

根據(jù)二次函數(shù)性質(zhì)可得出點A1的坐標,求得直線A1A2y=x+2,聯(lián)立方程求得A2的坐標,即可求得A3的坐標,同理求得A4的坐標,即可求得A5的坐標.

A點坐標為(1,1),

∴直線OAy=x,A1(﹣11),

A1A2OA,

∴直線A1A2y=x+2

得:,

A2(24),

A3(﹣2,4),

A3A4OA,

∴直線A3A4y=x+6

得:,

A4(39),

A5(﹣39),

故答案為:(﹣39).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、FAD上的點,且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點G、H

1)求EGBG的值;

2)求證:AG=OG;

3)設AG=a,GH=b,HO=c,求abc的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在一個點M,使得PM = MC,則稱點P為⊙C等徑點.已知點D,E,F

1)當⊙O的半徑為1時,

①在點DE,F中,⊙O等徑點

②作直線EF,若直線EF上的點Tm,n)是⊙O等徑點,求m的取值范圍.

2)過點EEGEFx軸于點G,若EFG上的所有點都是某個圓的等徑點,求這個圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某市決定開展我和祖國共成長主題演講比賽,某中學將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.

1)表中m   ,n   ;

2)請在圖中補全頻數(shù)直方圖;

3)甲同學的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在   分數(shù)段內(nèi);

4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某養(yǎng)殖戶長期承包一口魚糖養(yǎng)魚,每年養(yǎng)殖一批,從魚苗放入養(yǎng)到成品需要300天,魚糖承包費用每年5000元,他記錄了前幾年平均每天投入飼料量(單位:kg)與年底成品魚(達到一定規(guī)格可以銷售)產(chǎn)量之間的關系如下表:

平均每天投入飼料(kg

20

25

30

40

50

60

70

80

成品魚產(chǎn)量(kg

2800

3000

3200

3600

3900

4000

3900

3600

1)請用適當?shù)暮瘮?shù)模型描述平均每天投入飼料數(shù)量與成品魚產(chǎn)量之間的關系;

2)如果今年的飼料價格為16/kg,成品魚銷售價為20/kg,魚苗費用4000元,假設養(yǎng)成的成品魚全部都能按此價格賣出.請建立適當?shù)暮瘮?shù)模型平均每天投入飼料多少千克時,該養(yǎng)殖戶當年在該魚糖養(yǎng)殖這種魚獲得的利潤最多,最多利潤是多少元?(利潤=銷售收入﹣飼料成本﹣魚糖承包費﹣魚苗成本).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A為反比例函數(shù)y(其中x0)圖象上的一點,在x軸正半軸上有一點B,OB4.連接OA、AB,且OAAB2

1)求k的值;

2)過點BBCOB,交反比例函數(shù)yx0)的圖象于點C

連接AC,求△ABC的面積;

在圖上連接OCAB于點D,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸,軸分別交于點,經(jīng)過點的拋物線軸的另一個交點為點,點是拋物線上一點,過點軸于點,連接,設點的橫坐標為.

求拋物線的解析式;

當點在第三象限,設的面積為,求的函數(shù)關系式,并求出的最大值及此時點的坐標;

連接,若,請直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),二次函數(shù)yax2bxa≠0)的圖象與x軸、直線yx的交點分別為點A(4,0)B(5,5)

1a   ,b   ,∠AOB   °;

2)連接AB,點P是拋物線上一點(異于點A),且∠PBO=∠OBA,求點P的坐標   ;

3)如圖(2),點CD是線段OB上的動點,且CD2.設點C的橫坐標為m

①過點C、D分別作x軸的垂線,與拋物線相交于點F、E,連接EF.當CF+DE取得最大值時,求m的值并判斷四邊形CDEF的形狀;

②連接AC、AD,求m為何值時,AC+AD取得最小值,并求出這個最小值.

查看答案和解析>>

同步練習冊答案