如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是           三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

解:(1)等腰

       (2)∵拋物線的“拋物線三角形”是等腰直角三角形,

        ∴該拋物線的頂點(diǎn)滿足

        ∴

       (3)存在.

        如圖,作△與△關(guān)于原點(diǎn)中心對(duì)稱,

        則四邊形為平行四邊形.

        當(dāng)時(shí),平行四邊形為矩形.

         又∵,

        ∴△為等邊三角形.

        作,垂足為

        ∴

        ∴

        ∴

        ∴,

        ∴,

        設(shè)過點(diǎn)三點(diǎn)的拋物線,則

             解之,得

        ∴所求拋物線的表達(dá)式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是
等腰
等腰
三角形;
(2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
(3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點(diǎn)O為對(duì)稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)(帶解析) 題型:解答題

如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是          三角形;
(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;
(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)(解析版) 題型:解答題

如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是           三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是           三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案