如圖,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,點Q從C開始沿CD邊向D移動,速度是每秒1厘米,點P從A開始沿AB向B移動,速度是點Q速度的a倍,如果點P,Q分別從A,C同時出發(fā),當(dāng)其中一點到達(dá)終點時運動停止.設(shè)運動時間為t秒.已知當(dāng)t=時,四邊形APQD是平行四邊形.

(1)求a的值;

(2)線段PQ是否可能平分對角線BD?若能,求t的值,若不能,請說明理由;

(3)若在某一時刻點P恰好在DQ的垂直平分線上,求此時t的值.

 

 

(1)a=3

(2)t=3

(3)

解析:解:(1)∵四邊形APQD是平行四邊形

∴6-=,即:                …………(2分)

(2)若線段PQ平分對角線BD,即DO=BO

則△DOQ≌△BOP         …………(4分)

∴DQ=BP

即:6-t=12-3t 解得t=3    …………(5分)

(3)分別過點C、D作CN⊥AB,DM⊥AB,交AB于點M、N

可得:四邊形DNPM是矩形,△DAM≌△CBN

∴AM==3                  …………(6分)

∵點P恰好在DQ的垂直平分線EP上

∴PD=PQ,DM=DQ,四邊形DNPM是矩形

∴DM=NP

即:,解得:   …………(8分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設(shè)P、Q同時出發(fā)并運動了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案