【題目】定義新運算:對于任意實數a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范圍,并在數軸上表示出來.
科目:初中數學 來源: 題型:
【題目】下列命題:①一組對邊平行,另一組對邊相等的四邊形是平行四邊形;②對角線互相平分的四邊形是平行四邊形;③在四邊形ABCD中,AB=AD,BC=DC,那么這個四邊形ABCD是平行四邊形;④一組對邊相等,一組對角相等的四邊形是平行四邊形.其中正確的命題是_________________(將命題的序號填上即可)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】南山植物園中現有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.
(1)請用代數式表示A、B兩園區(qū)的面積之和并化簡;
(2)現根據實際需要對A園區(qū)進行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.
①求x、y的值;
②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費用與吸引游客的收益如表:
求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索與運用:
(1)基本圖形:如圖①,已知OC是∠AOB的角平分線,DE∥OB,分別交OA、OC于點D、E.求證:DE=OD;
(2)在圖②中找出這樣的基本圖形,并利用(1)中的規(guī)律解決這個問題:已知△ABC中,兩個內角∠ABC與∠ACB的平分線交于點O,過點O作DE∥BC,交AB、AC于點D、E.求證:DE=BD+CE;
(3)若將圖②中兩個內角的角平分線改為一個內角(如圖③,∠ABC)、一個外角(∠ACF)和兩個都是外角(如圖④∠DBC、∠BCE)的角平分線,其它條件不變,則線段DE、BD、CE的數量關系分別是:圖③為 、圖④為 :并從中任選一個結論證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC,∠ACB=90°,AC=3,BC=4,將邊Ac沿CE翻折,使點A落在AB上的D處,再將邊BC沿CF翻折,使點B落在CD的延長線上的點F處,兩條折痕與斜邊AB分別交于點E、F,則線段BF的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com