(2009•遼寧)已知:扇形OAB的半徑為12厘米,∠AOB=150°,若由此扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑是    厘米.
【答案】分析:半徑為12的扇形的弧長(zhǎng)是=10π,圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng),因而圓錐的底面周長(zhǎng)是10π,設(shè)圓錐的底面半徑是r,則得到2πr=10π,解得:r=5cm.
解答:解:半徑為12的扇形的弧長(zhǎng)是=10π,
圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng),因而圓錐的底面周長(zhǎng)是10π,
設(shè)圓錐的底面半徑是r,
則得到2π這個(gè)圓錐底面圓的半徑是5厘米.
點(diǎn)評(píng):本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算.解題思路:解決此類(lèi)問(wèn)題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:(1)圓錐的母線(xiàn)長(zhǎng)等于側(cè)面展開(kāi)圖的扇形半徑;(2)圓錐的底面周長(zhǎng)等于側(cè)面展開(kāi)圖的扇形弧長(zhǎng).正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•遼寧)已知:在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2-x+3(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱(chēng)軸為直線(xiàn)x=-2.
(1)求該拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:
探究一:如圖1,設(shè)△PAD的面積為S,令W=t•S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒(méi)有,說(shuō)明理由;
探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.(參考資料:拋物線(xiàn)y=ax2+bx+c(a≠0)對(duì)稱(chēng)軸是直線(xiàn)x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•遼寧)已知:如圖,等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)P是腰DC上的一個(gè)動(dòng)點(diǎn)(P與D、C不重合),點(diǎn)E、F、G分別是線(xiàn)段BC、PC、BP的中點(diǎn).
(1)試探索四邊形EFPG的形狀,并說(shuō)明理由;
(2)若∠A=120°,AD=2,DC=4,當(dāng)PC為何值時(shí),四邊形EFPG是矩形并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•遼寧)已知:平面直角坐標(biāo)系中有一點(diǎn)A(2,1),若將點(diǎn)A向左平移4個(gè)單位,再向下平移2個(gè)單位得到點(diǎn)A1,則點(diǎn)A1的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省丹東市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•遼寧)已知:如圖,CD是⊙O的直徑,點(diǎn)A在CD的延長(zhǎng)線(xiàn)上,AB切⊙O于點(diǎn)B,若∠A=30°,OA=10,則AB=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省丹東市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•遼寧)已知:扇形OAB的半徑為12厘米,∠AOB=150°,若由此扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐底面圓的半徑是    厘米.

查看答案和解析>>

同步練習(xí)冊(cè)答案