【題目】如圖,一款落地燈的燈柱AB垂直于水平地面MN,高度為1.6米,支架部分的形為開口向下的拋物線,其頂點C距燈柱AB的水平距離為0.8米,距地面的高度為2.4 米,燈罩頂端D距燈柱AB的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.

【答案】1.95

【解析】

以點B為原點建立直角坐標系,則點C為拋物線的頂點,即可設(shè)頂點式yax0.822.4,點A的坐標為(0,1.6),代入可得a的值,從而求得拋物線的解析式,將點D的橫坐標代入,即可求點D的縱坐標就是點D距地面的高度

解:

如圖,以點B為原點,建立直角坐標系.

由題意,點A0,1.6),點C0.8,2.4),則設(shè)頂點式為yax0.822.4

將點A代入得,1.6a00.822.4,解得a1.25

∴該拋物線的函數(shù)關(guān)系為y1.25x0.822.4

∵點D的橫坐標為1.4

∴代入得,y1.25×(1.40.822.41.95

故燈罩頂端D距地面的高度為1.95

故答案為1.95.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,窗簾的褶皺是指按照窗戶的實際寬度將窗簾布料以一定比例加寬的做法,褶皺之后的窗簾更能彰顯其飄逸、靈動的效果.其中,窗寬度的1.5倍為平褶皺,窗寬度的2倍為波浪褶皺.如圖②,小莉房間的窗戶呈長方形,窗戶的寬度(AD)比高度(AB)的少0.5m,某種窗簾的價格為120/m2.如果以波浪褶皺的方式制作該種窗簾比以平褶皺的方式費用多180元,求小莉房間窗戶的寬度與高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1,x2是關(guān)于x的一元二次方程x22(m3) xm210的兩個根.

1)當m取何值時,方程有兩個不相等的實數(shù)根?

2)若以x1,x2為對角線的菱形邊長是,試求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形的對角線軸上,若菱形的周長為,點的坐標為,反比例函數(shù)的圖象經(jīng)過點

(1)求該反比例函數(shù)的解析式;

(2)若點是反比例函數(shù)上的一點,且的面積恰好等于菱形的面積,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB=90°,∠OAB=30°,反比例函數(shù)的圖象過點,反比例函數(shù)的圖象過點A

1)求的值.

2)過點BBCx軸,與雙曲線交于點C,求△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線和直線l:y=kx+b,點A(-3,-3),B(1,-1)均在直線l上.

1)若拋物線C與直線l有交點,求a的取值范圍;

2)當a=-1,二次函數(shù)的自變量x滿足m≤x≤m+2時,函數(shù)y的最大值為-4,求m的值;

3)若拋物線C與線段AB有兩個不同的交點,請直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當y>0時,﹣1<x<3,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表:

x

2

1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中正確的是( 。

A. 拋物線與x軸的一個交點為(40

B. 函數(shù)yax2+bx+c的最大值為6

C. 拋物線的對稱軸是x

D. 在對稱軸右側(cè),yx增大而增大

查看答案和解析>>

同步練習冊答案