已知:如圖,一次函數(shù)數(shù)學(xué)公式與反比例函數(shù)數(shù)學(xué)公式的圖象在第一象限的交點(diǎn)為A(1,n).
(1)求m與n的值;
(2)設(shè)一次函數(shù)的圖象與x軸交于點(diǎn)B,求∠ABO的度數(shù).

解:(1)∵點(diǎn)A(1,n)在雙曲線y=上,
∴n=,
又∵A(1,)在直線y=x+m上,
∴m=;

(2)過點(diǎn)A作AM⊥x軸于點(diǎn)M,
∵直線y=x+與x軸交于點(diǎn)B,
∴點(diǎn)B的坐標(biāo)為(-2,0),
∴OB=2,
∵點(diǎn)A的坐標(biāo)為(1,),
∴AM=,OM=1,
∴BM=3,
在Rt△BAM中,∠AMB=90°,
∵tan∠ABM==,
∴∠ABM=30°.
分析:(1)將A坐標(biāo)代入反比例解析式求出n的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式即可求出m的值;
(2)過A作AM垂直于x軸,對(duì)于直線AB,令y=0求出x的值,確定出OB的長,再由A的坐標(biāo)求出AM與BM的長,在直角三角形ABM中,利用銳角三角函數(shù)定義求出tan∠ABM的值,利用特殊角的三角函數(shù)值求出∠ABO的度數(shù)即可.
點(diǎn)評(píng):此題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,涉及的知識(shí)有:坐標(biāo)與圖形性質(zhì),一次函數(shù)與x軸的交點(diǎn),銳角三角函數(shù)定義,以及待定系數(shù)法確定函數(shù)解析式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過A作AC⊥x軸于點(diǎn)C.已精英家教網(wǎng)OA=
5
,OC=2AC
,且點(diǎn)B的縱坐標(biāo)為-3.
(1)求點(diǎn)A的坐標(biāo)及該反比例函數(shù)的解析式;
(2)求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•白云區(qū)一模)已知,如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
mx
的圖象都經(jīng)過點(diǎn)A(3,-2)和點(diǎn)B(n,6).
(1)n=
-1
-1

(2)求這兩個(gè)函數(shù)的解析式;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
m
x
的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,OB=
10
,tan∠BOC=
1
3

(1)求反比例函數(shù)的解析式;
(2)若BC=OC,求一次函數(shù)的解析式.
(3)直接寫出當(dāng)x<0時(shí),kx+b-
m
x
>0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),過A作AC⊥x,軸于點(diǎn)C,已知OA=
5
,OC=2AC,且點(diǎn)B的縱坐標(biāo)為-3,
(1)求點(diǎn)A的坐標(biāo);
(2)求該反比例函數(shù)的解析式;
(3)點(diǎn)B的坐標(biāo)為
2
3
,-3)
2
3
,-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,一次函數(shù)y=kx+b的圖象與y軸交于點(diǎn)A,且與正比例函數(shù)y=-x的圖象交于點(diǎn)B,則該一次函數(shù)的解析式為
y=x+2
y=x+2
;不等式kx+b>-x的解集為
x>-1
x>-1

查看答案和解析>>

同步練習(xí)冊(cè)答案