(2012•大豐市一模)已知:如圖,M是線段BC的中點,BC=4,分別以MB、MC為邊在線段BC的同側作等邊△BAM、等邊△MCD,連接AD.
(1)求證:四邊形ABCD是等腰梯形;
(2)將△MDC繞點M逆時針方向旋轉α(60°<α<120°),得到△MD′C′,MD′交AB于點E,MC′交AD于點F,連接EF.
①求證:EF∥D′C′;
②△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值.
分析:(1)可求出∠AMD=60°,MA=MD,繼而得出△AMD是等邊三角形,根據(jù)∠ADM=∠DMC=60°,可判斷AD∥BC,從而可得出結論;
(2)先證△MDF全等于△MAE,可得△MEF為等邊三角形,即得EF∥D?C?;
(3)由①可得AE+AF=AB,為定值,只需滿足EF最小即可,由①可得△MEF為等邊三角形,EF=ME,故只需ME最小即可,顯然當ME⊥AB的時候ME最。
解答:解:(1)∵M是線段BC的中點,
∴BM=MC,
又∵△BAM、△MCD是等邊三角形,
∴∠AMB=∠DMC=60°,MA=MD,
∴△MAD為等邊三角形,
∴∠ADM=∠DMC=60°,
∴AD∥BC,
又∵AB=BM=MC=DC,
∴四邊形ABCD為等腰梯形. 

(2)①∵∠DMF+∠AMF=60°,∠AME+∠AMF=60°,
∴∠AME=∠DMF,
∵在△MAE和△MDF中,
∠AME=∠DMF
∠EAM=∠FDM
MA=MD
,
∴△MAE≌△MDF(AAS),
∴ME=MF,
∴∠EMF=∠AMF+∠AME=∠AMF+∠DMF=∠AMD=60°,
∴△MEF為等邊三角形,
∴∠FEM=∠C'D'M=60°,
∴EF∥D′C′.
②存在最小值.
由①得,AE+AF=AB,為定值,只需滿足EF最小即可,
由①得,△MEF是等邊三角形,EF=ME,只需滿足ME最小即可,
顯然當ME⊥AB時取得最小,
由等邊三角形的性質可得:此時ME=2
3
,
故△AEF的周長最小值等于2+
3
點評:本題考查了四邊形綜合題,涉及了全等三角形的判定與性質、旋轉的性質及等腰梯形的判定,解答本題要求我們熟練掌握各個知識點,并能將所學知識融會貫通.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E.
(1)①求證:△ABE∽△ADB;②若AE=2,ED=4,求⊙O的面積;
(2)延長DB到F,使得BF=BO,連接FA,若AC∥FD,試判斷直線FA與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)下列四個圖形中,不能由如圖通過平移或旋轉得到的圖形是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)據(jù)相關報道,2011年江蘇省GDP總值達到5.3萬億元.將這個數(shù)據(jù)用科學記數(shù)法表示為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)已知拋物線y=x2+x-1經(jīng)過點P(m,5),則代數(shù)式m2+m+2006的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•大豐市一模)一次函數(shù)y=kx+b的圖象如圖所示,當x>4時,y的取值范圍是( 。

查看答案和解析>>

同步練習冊答案