【題目】如圖,一次函數(shù)ykx+byx+1交于點A1m),直線ykx+by軸于點B0,4).

1)試確定mk,b的值;

2)當0≤x≤2時,寫出二元一次方程kxy=﹣b的所有整數(shù)解;

3)寫出方程組的解.

【答案】1m2k=﹣2,b4;(2)二元一次方程kxy=﹣b的所有整數(shù)解為:,;(3

【解析】

(1)根據(jù)一次函數(shù)ykx+byx+1交于點A1,m)可得m1+1,可得m的值,因為ykx+b經(jīng)過點B0,4),可得2kb,4b,進而得b、k的值;

(2)由第一問的答案求出一次函數(shù)解析式kxy=﹣b,把整數(shù)x0、1、2分別代入一次函數(shù)解析式求出對應y的值即可;

(3)利用加減消元法和代入法解二元一次方程組即可.

解:(1)∵一次函數(shù)ykx+byx+1交于點A1,m),

m1+12,

A1,2),

∵直線ykx+by軸于點B0,4),

解得:;

2)∵一次函數(shù)ykx+b中的k=﹣2,b4,

y=﹣2x+4

∴當x0,12時,y4,2,0,

∴二元一次方程kxy=﹣b的所有整數(shù)解為:,

3)解方程組,

即解方程組

得:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在O中,點DO上的一點,點C是直徑AB延長線上一點,連接BD,CD,且∠A=∠BDC

1)求證:直線CDO的切線;

2)若CM平分∠ACD,且分別交ADBD于點M,N,當DM2時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某區(qū)八年級學生的睡眠情況,隨機抽取了該區(qū)八年級學生部分學生進行調(diào)查.已知D組的學生有15人,利用抽樣所得的數(shù)據(jù)繪制所示的統(tǒng)計圖表.

一、學生睡眠情況分組表(單位:小時)

組別

睡眠時間

二、學生睡眠情況統(tǒng)計圖

根據(jù)圖表提供的信息,回答下列問題:

1)試求八年級學生睡眠情況統(tǒng)計圖中的a的值及a對應的扇形的圓心角度數(shù);

2)如果睡眠時間x(時)滿足:,稱睡眠時間合格.已知該區(qū)八年級學生有3250人,試估計該區(qū)八年級學生睡眠時間合格的共有多少人?

3)如果將各組別學生睡眠情況分組的最小值(如C組別中,取),B、CD三組學生的平均睡眠時間作為八年級學生的睡眠時間的依據(jù).試求該區(qū)八年級學生的平均睡眠時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西汾酒,又稱“杏花村酒”.釀造汾酒是選用晉中平原的“一把抓高粱”為原料.汾陽縣某村民合作社2016年種植“一把抓高粱”100畝,2018年該合作社擴大了“一把抓高梁”的種植面積,共種植144.

1)求該合作社這兩年種植“一把抓高梁”畝數(shù)的平均增長率;

2)某糧店銷售“一把抓高粱”售價為13/斤,每天可售出30斤,每斤的盈利是1.5.為了減少庫存,糧店決定搞促銷活動.在銷售中發(fā)現(xiàn):售價每降價0.1元,則可多售出2.若該糧店某天銷售“一把抓高梁”的盈利為40元,則該店當天銷售單價降低了多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為測量小島A到公路BD的距離,先在點B處測得∠ABD37°,再沿BD方向前進150m到達點C,測得∠ACD45°,求小島A到公路BD的距離.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y1=3x5與反比例函數(shù)y2=的圖象相交A2,m),Bn,﹣6)兩點,連接OA,OB

1)求kn的值;

2)求AOB的面積;

3)直接寫出y1 y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意一個四位數(shù).如果把它的前兩位數(shù)字和后兩位數(shù)字調(diào)換,則稱得到的數(shù)為的調(diào)換數(shù),把與其調(diào)換數(shù)之差記為,例如的調(diào)換數(shù)為

1)求證:對于任意一個四位數(shù),都能被整除.

2)我們把的商記為,例如,若有兩數(shù),其中, ,,都是正整數(shù)),那么當時,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC為O的直徑,B為O上一點,ACB=30°,延長CB至點D,使得CB=BD,過點D作DEAC,垂足E在CA的延長線上,連接BE.

(1)求證:BE是O的切線;

(2)當BE=3時,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,CFAB于點F,過點DDEBC的延長線于點E,且CFDE

1)求證:△BFC≌△CED;

2)若∠B60°,AF5,求BC的長.

查看答案和解析>>

同步練習冊答案